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Summary

An objective and quantitative method has been devel oped
for deriving models of complex and specialized spheres of
activity (domains) from domain-generated verbal data
The method was devel oped for analysis of interview tran-
scripts, incident reports, and other text documents whose
original source is people who are knowledgeable about,
and participate in, the domain in question. To test the
method, it is applied here to areport describing aremote
sensing project within the scope of the Earth Observing
System (EOS). The method has the potential to improve
the designs of domain-related computer systems and
software by quickly providing developers with explicit
and objective models of the domain in aform which is
useful for design. Results of the analysisinclude a net-
work model of the domain, and an object-oriented rela-
tional analysis report which describes the nodes and
relationshipsin the network model. Other products
include a database of relationshipsin the domain, and an
interactive concordance. The analysis method utilizes a
newly developed relational metric, a proximity-weighted
frequency of co-occurrence. The metric is applied to
relations between the most frequently occurring terms
(words or multiword entities) in the domain text, and the
terms found within the contexts of these terms. Contextual
scope is selectable. Because of the discrimi nating power
of the metric, data reduction from the association matrix
to the network is simple. In addition to their value for
design, the models produced by the method are also useful
for understanding the domains themselves. They can, for
example, be interpreted as models of presencein the
domain.

I ntroduction

The design of a computer system that is intended to sup-
port a complex and specialized sphere of activity, a
domain, must embody amodel of that activity in order to
be effective. Designers rely on analysis of the relevant
sphere of activity, a process called domain analysis, in
order to obtain amode! of the domain. A domain model
serves as aframework for organizing adomain system,
that is, computer hardware and software which gather,

manipulate, and distribute information concerning the
domain and its participants. Domain modeling requires
the relevant aspects of the domain to be mapped to logical
forms which can be applied to the design of system com-
ponents, especially the design of software. Characteriza-
tion of the structures and functions that are important in
the domain requires the analyst to reliably learn about the
important conceptual and tangible objectsin the domain,
their key attributes and essential actions, and other impor -
tant relationships among these objects. Thisinformation
can be integrated to form an explicit model of the domain
for use by software designers. The model can also be used
by those who wish to understand the organization and
operations of the domain so that aspects of the domain
itself can be improved.

Subjectivity in domain analysis can reduce the utility of
the resulting domain model and can lead to misinformed
system design and inadequate service to the domain. Fur-
ther, the complexity of those endeavors which require
computer systems does not yield to ad hoc analy ses.
Effective domain analysis requires objective characteriza-
tion, along with supporting quantitative metrics, in order
to provide useful models of domains to the designers of
domain systems.

Verbal data can be a useful source of information about
specialized domains of activity. Every important domain
is built upon countless words in innumerable documents,
and increasingly, many of these documents are accessible
in digital form. The ability to automatically, objectively,
and quantitatively model important patterns in selected
documentsin this large collection of verbal datawould be
valuable to domain analysts. In fact, verbal data analysis
isacentral theme of research in many fields, including
database design, artificial intelligence, knowledge acqui-
sition, computational linguistics, and object-oriented
analysis (OOA). Work in these fields suggests ways that
verbal data might be processed to better support analysis
and modeling of specialized domains.

Network Modelsand Verbal Data Analysis

Common to many of the fields which conduct verbal data
analysisisthe use of networks as a basic modeling form.



As discussed below, the entity-relationship data model,
semantic networks, association-based models of expertise,
on-line lexical databases, and object-oriented models all
utilize networks to organize and represent entities and
relations for verbal data analysis. Networks are built of
nodes, directed arcs, and annotations. Nodes and arcs are
assigned a variety of meanings, but typically, nodes repre-
sent entities (identifiable things or ideas), arcs represent
relations (associations) among nodes, and annotations
label, quantify, and otherwise describe the nodes and arcs.
The meaning of the term “entity” as used in different
fields varies. In this paper, it is used to denote a separable
and identifiable thing, idea, action, attribute, or attribute
value belonging to a domain. The term “object” isused to
refer to separable and identifiable things or ideas, and it
denotes objects in general, classes of objects, and specific
instances of objects.

The entity-relationship model was created to provide a
generalized data model that “adopts the more natural view
that the real world consists of entities and relationships’
(Chen, 1976, pg. 9). Thus, using this data model, verbal
and other information relevant to adomain is modeled in
the database as entities and relations. Accordingly, entities
are grouped in “entity sets,” which are classes. Attributes
and their attribute values are associated with each entity.
Relationships, which have their own attributes and
attribute values, characterize a variety of associations
among enti ties. While Chen differentiates his data model
from several others, including one technically known as
the “network” model, his model utilizes the general notion
of anetwork, that is, nodes, directed arcs, and annotations.
The essential point, for the purposes of this paper, isthe
fact that Chen’s data model, which is considered seminal,
specifies entities, classes, attributes, attribute values, and
relations as the essentia ingredients for modeling a“real
world” domain, and these are represented using nodes,
arcs, and annotations.

Semantic networks were developed as a graphical repre-
sentation of “semantic memory” (Quillian, 1968), and
have been adopted by the field of artificial intelligence as
agraphical form of predicate calculus (Nilsson, 1980). In
both applications of semantic networks, the networks con-
sist of acollection of labeled nodes connected by labeled
associative links., Most often, the network is created by
hand in an attempt to represent the precise meaning of a
one or several declarative sentences. The nodes can repre-
sent terms in the predicate calculus that are identified with
individual words, especially nouns, or more complex
structures. The associative links can represent predicates
in the predicate calculus that are identified with verbs, or
with categorical or organizational relations such as“isa
kind of,” or “isapart of,” which are sometimes called
functions or mappings. The nouns, verbs, and functionsin

a sentence are interpreted as corresponding to things,
actions, and mappings in adomain of discourse. The goal
of those who use semantic network notations has typically
been to investigate the nature of human or artificial mem-
ory viaa concrete representation. The focus has generally
been on avery fine-grained, manual analysis of a small
number of sentences.

While formal verbal data analysisisonly one of many
knowledge acquisition methods (Boose, 1989), the con-
ceptual models produced by efforts to elicit expert know! -
edge are usualy in the form of linguistic structures (Shaw
and Woodward, 1990). Further, most knowledge acquisi -
tion methods depend upon spoken communication
between domain experts and knowledge engineers, and
interviews are perhaps the most common method of elici-
tation. Other methods include verbal protocol analysis
(Ericsson and Simon, 1984), for which the expert intro-
spects and “thinks aloud” during atask or in retrospect,
and automated textual analysis. Automating the under -
standing of general knowledge about a specific domain
from text, however, isamajor theoretical and technical
challenge. The bottleneck in natural language understand-
ing isthe lexicon, an area of intense research (e.g., Zernik,
1991; Miller, Beckwith, Fellbaum, Gross, and Miller,
1990; Grefenstette and Hearst, 1992; Schiitze, 1993).
While unrestricted text cannot yet be automatically
understood in al its complexity, it is still possible to
derive useful information from it using computational
means.

Analysis of large volumes of natural language text is cen-
tral to the field of content analysis. An enduring hallmark
of content analysisis its emphasis on mapping verbal data
derived from public mediato socio-political thematic cat-
egories and a search for bias or socia influence. Much
productive effort has gone into the application and devel-
opment of computing tools for processing verbal data,
including Key Word In Context (KWIC) indices, mapping
input to thematic categories, and statistical analysis of text
(Dunphy, 1966; Krippendorff, 1980; Weber, 1990).

Osgood (1959), for example, developed one of the first
methods of computing the frequency of co-occurrences of
important terms and usages within verbal data, a process
he called “ contingency analysis.” The nature of the co-
occurring entities, the granularity of the contextsin which
co-occurrence was identified, and the multiplying factor,
are important to note. Osgood identified themes which he
grouped in such categories as. freedom, business, rugged
individualism, youth, and other socio-palitical concepts.
He considered one or more co-occurrences of two themes
within an approximately half hour speech to indicate a
single “hit,” and the number of speeches (out of 38) con-
taining a hit equaled the co-occurrence metric value



between those two ideas within the domain sampled by
the speeches. He used the results to produce a network
model of the ideas within the domain, which, at least on
one occasion, he instantiated as a physical ball and stick
model. The length of a stick was proportional to the fre-
guency of co-occurrence, although some compromises
were required because the dimensionality of the model
was greater than three. At the time this work was done,
the analysis was especially arduous, which partly accounts
for the coarse granularity of the contexts (entire

speeches), and the lack of precision of the multiplying
factor (the number of speeches containing one or more co-
occurrences). Osgood’ s essential contribution, however,
wasin his careful attention to the importance of co-occur-
rence relations among entitiesin verbal data. Although
some researchers in computational linguistics also use
co-occurrence information (e.g., Smadja, 1991), the main
emphasisison lexical co-occurrences such as“home

run,” not the conceptual relations of interest to Osgood.

The entities and relations of verbal data are of paramount
importance to the disciplines of psycholinguistics and
computational linguistics. For example, WordNet, a com-
puterized dictionary based on psycholinguistic principles
(Miller, Beckwith, Fellbaum, Gross, and Miller, 1990;
Beckwith, Fellbaum, Gross, and Miller, 1991), organizes
tens of thousands of nouns, verbs, and adjectives accord-
ing to awell-defined set of linguistic relations, the most
important of which is similarity of meaning. Sets of syn-
onymous nouns are organized into topical hierarchies
based on hypernymy/hyponymy relations, which are also
known as superordinate/ subordinate, generalization/
specialization, or “kind of” relations. Nouns are related to
those in other synonym sets by holonymy/meronymy
(whole/part) relations, and by antonymy. Verbs are
grouped by major semantic category, such as: motion,
possession, and communication, and they are interrel ated
by “entailment” (strict implication) relations. It isimpor-
tant to note the psycholinguistic validity, asindicated by
the research underlying the design of WordNet, of using
“kind of” and “wholée/part” relations as the most important
definitional relations among nouns in synonym sets, since
these are the same rel ations emphasized in organizing
classes/objects in object-oriented analysisand design. Itis
also important to observe that “general knowledge”
(Miller, 1990) or “real world” relations among entities
(Chen, 1976), such as environmental adjacency of objects
which share a physical context or the logical adjacency of
objects which share a conceptual context, are (intention-
aly) not captured by WordNet's definitional relations.

Network methods have been developed for analyzing
“real world” relatedness among words which are promi-
nent in domain vocabularies. In particular, “ Pathfinder”
networks (Schvaneveldt, Durso, and Dearholt, 1989) have

been interpreted as models of expertise for application to
skill level assessment (Cooke and Schvanevel dt, 1988),
selection and training (Schvaneveldt, Durso, Goldsmith,
Breen, and Cooke, 1985), user interface design
(McDonald and Schvaneveldt, 1988; Roske-Hofstrand
and Paap, 1986), and characterization of user interface
designer expertise (Gillan and Breen, 1990). The data
from which Pathfinder networks are created are typically
derived from paired-comparison experiments, in which
two words at atime are rated in terms of their relatedness.
This provides asingle relational weight per node pair for
each subject. Relatedness data have also been derived
using sorting methods in which words are assigned to
groups based on relatedness, providing arelational weight
of one among itemsin a pile for each subject performing
the sort. Scores are summed across subjects to provide a
relational metric based on agreement among subjects.
Another data collection method is to note the sequence of
command words or button pressesin a user interface and
then to apply a score of one to sequential adjacencies. As
in the sorting task, summation of the scores across sub-
jects provides an agreement metric. Unlike the sorting
task, each subject can produce arelational value of greater
than one, as when there are repeated transitions from one
item to another. In the more commonly used paired com-
parison or sorting methods of measuring the relatedness
between items, the context of the judgment istypically a
scenario described at the beginning of the experiment.
Further, the criteria of relatedness are usually unspecified.
The resulting association matrix containing the relational
weights is commonly reduced to a spatial distribution of
related items viamultidimensional scaling (Kruskal and
Wish, 1978), or to anetwork of explicit pairwise relations
viathe Pathfinder network reduction algorithm
(Schvaneveldt, Durso, and Dearholt, 1989).

In seeking to eliminate nonessential domain relations
from their networks, users of the Pathfinder algorithm
endorse the assertion that a practical network model of a
domain must not include all possible relations among all
of the entitiesin the domain. If it did, the model would be
too complex for interpretation. Simon (1969) offered the
“empty world hypothesis’ as an explanation of the fact
that simple models can provide useful representations of
complex and important domains. His hypothesisimplies
that, due to the redundancy in most complex structures,
there are far fewer than N x N relations of importance
among N domain entities. “[F]or atolerable description of
reality only atiny fraction of al possible interactions
needs to be taken into account” (pg. 221). This suggests
that in order to describe the salient entities and relations of
adomain, one should first identify the domain entities of
importance and then reduce the total number of possible



relations among them to those few relations which are of
particular importance to that domain.

(Itis helpful to be explicit about the number of possible
relations among N entities. There can be N x N relations
among N entitiesif the relationship R(A,B), with A and B
being among the N entities, is distinct from R(B,A), if
R(A,B) accountsfor all relations from A to B and R(B,A)
accountsfor al relationsfrom B to A, and if the reflexive
relations R(A,A), R(B,B), etc. areincluded. If oneiscon-
cerned with directed connections apart from reflexive
ones, thereare (N x N) =N or N (N — 1) relations of inter-
est. If oneisonly concerned with a directionless connec-
tion between A and B, and in addition, oneis not inter -
ested in reflexive relations, then thereare N (N — 1)/2
pairwise relations of interest among the N entities. More
formally stated, the number of combinations of N items
taken two at atime without replacement is N!/(N —2)!2!,
which isequal to N(N — 1)(N — 2)!/(N —2)!2!, which
equalsN (N —1)/2. If thereflexive relations are indeed of
interest, this becomes N(N + 1)/2. Since in the general
caseit is not assumed that interactions between entities
are directionless, and the relation of an entity with itself is
not excluded, the maximum possible number of relations
among N entitiesis considered, for the sake of discussion,
tobeN x N, that is, N squared.)

Domain-Based, Object-Oriented Software

The object-oriented paradigm (Booch, 1991; Coad and

Y ourdan, 1991; Dillon and Tan, 1993) is particularly
appropriate for mapping real-world domain modelsto
software implementations (Fichman and Kemerer, 1992;
Monarchi and Puhr, 1992; Laurini and Thompson, 1992).
The object orientation, with its emphasis on objects
derived from the vocabulary of the domain, is comple-
mentary to the procedural orientation, which emphasizes
the order of events. The object-oriented domain model is
especialy useful for representing and interpreting the
enduring structures of domains, integrating the logical and
physical entities of importance into a coherent relational
framework (Booch, 1991; Coad and Y ourdan, 1991;
Dillon and Tan, 1993; Graham, 1994). Further, the object-
oriented approach is specifically intended to improve the
isomorphy of the mapping from a domain to its software
representation. Of particular importance in an object-
oriented analysisis the identification of classes/objects,
attributes of objects, attribute values, the actions associ-
ated with objects, and the relations among objects. The
class relations among objects are represented in a
superordinate/subordinate (“kind of”) hierarchy, and
structural relations among objects are represented in
wholée/part hierarchies. The relations between objects and
their attributes, attribute values, and actions are implicit.

Chen (1992) asserts that before object-oriented designs
can proceed effectively, users mental models of their
domains must be made available. It is difficult, Chen
argues, to obtain mental models that are appropriate for
object-oriented design because there are currently no
objective and quantified methods for obtaining these
kinds of models. Accordingly, new knowledge acquisition
methods might be needed to obtain these specialized
domain models. Kaindl (1994) compares object-oriented
analysis with knowledge acquisition itself, and finds that
they have much in common. In particular, they both
require a process of discovery so that the domain of inter-
est can be modeled, and the system requirements speci -
fied. Kaindl also asserts that networks of relations among
objects are similar to the conceptual structures used by
knowledge engineers. He suggests that textual documents
which specify system requirements should be imple-
mented in hypertext so they can explicitly represent that
conceptual structure. Thus, he endorses the notion that
networks of related domain entities are implicit in specifi-
cation documents and that they can be made explicit using
hypertext or object-oriented networks.

Theideathat atext document can be usefully transformed
in order to specify the design of software wasfirst put to
the test by Abbott (1983). He transformed informal, writ-
ten procedural descriptions into computer programs. As
examples, Abbott wrote a description of afunction to
compute the number of days between two dates, and a
high level description of afunction to produce a KWIC
index on titles. While he considered histask to be trans-
formation rather than modeling, and emphasized a proce-
dural rather than an object-oriented view, it isinteresting
that Abbott favored alinguistic approach and suggested
an object oriented view of the problem to be solved.
Abbott argued that there is an important correspondence
between nouns and objects, and he used parts of speech as
astarting point for the specification of variables, values,
subroutines, and the like. This suggested the important
potential of linguistic analysis for object-oriented model -
ing. It is, however, a serious weakness of Abbott’s
approach that he himself wrote the text which served as
the basis of his designs. While this might be appropriate
for the sort of examples he addressed, it does not seem to
scale up for application to complex domains. For model -
ing of complex domains, the source text should not be
generated by the software designer but by persons who
are knowledgeable about, and participate in, the domain
of interest. Apart from this concern for domain modeling,
which is more demanding than the task Abbott placed on
himself, the concept of deriving software specifications
from verbal datawas seminal, though not yet fully
appreciated.



Abbott’s language-based approach has had someinflu-
ence on current thinking about object-oriented design.
Dillon and Tan (1993), for example, suggest that an
object-oriented analysis should begin with an informal
verbal description that iswritten by the analyst. In their
books on object-oriented methods, Booch (1991), Coad
and Y ourdan (1991), and Graham (1994) cite Abbott’s
work as a method worthy of consideration, while caution-
ing against over-dependence on it. The analysis of real -
world user domains (as opposed to small algorithmic
examples), they argue, requires afar more broad view
than the mere underlining of nouns and verbs to gather
possible domain objects and actions. Booch finds
Abbott’s method to be useful dueto its simplicity and the
fact that it forces the devel oper to work in the vocabulary
of the problem space. He claims, however, that the
method “ definitely does not scale well to anything beyond
fairly trivial problems’ (pg. 143). Graham elaborates
briefly on how the method might be improved by more
attention to the various kinds of nouns and verbs. Coad
and Y ourdan also find merit in the Abbott’s language-
based approach, but suggest looking for key nouns and
verbs in the widest possible variety of domain-related
documentation, not just devel oper-generated domain
descriptions.

Symbolic M odel of Presencein a Domain

Domain experts are immersed in the sensory and symbolic
experience of their domains. Thisimmersion is, in avery
real sense, a combination of sensory and symbolic pres-
ence, and one can interpret a domain model as amodel of
presence. Not only do such models have the potential to
be generally useful to the designs of all kinds of domain
systems, they could also be particularly useful for the
design of virtual environment systems (systems which
surround users in computer generated places, for applica-
tionsincluding visualization of scientific data, collabora-
tive work among geographically separated researchers,
and remote control of exploring vehicles).

Some organizing structure, formal paradigm, or model
must be adopted to map the experience of presencein a
domain to the unavoidably explicit formal model embod-
ied in computer software for the creation of virtual envi-
ronment systems. Typically, the sensory aspects of pres-
ence receive most of the attention. Certainly, itisvery
important to create sensory simulations as one major
component of virtual presence. To design avirtua envi-
ronment for areal world domain, however, a sensory
model of presenceisinsufficient. A symbolic model of
presence in the domainis also needed. A symbolic model
addresses the cognitive dimensions of presence, repre-
senting the associative experience of presence, not merely

its sensory aspects. While investigation of sensory pres-
ence involves visua, auditory, tactile, and other stimuli,
investigation of symbolic presence involves entities and
relations. Similarly, while virtual sensory presence
demands generation of surrogate stimuli, virtual symbolic
presence requires generation of surrogate logical and
physical entities and relations. Thus, the meaningful
things in an environment, whether concrete or abstract,
their attributes and actions, and their interrelations are of
particular interest in a symbolic model of presence.

There is some evidence that the symbolic component of
presence is characterized by persistent engagement of the
person present with metonymically related entities (i.e.,
those related by logical and physical adjacencies and
associations) encountered in environments (McGreevy,
1993, 1994). This suggests that the necessary symbolic
model could be built upon the logical and physical entities
and relationships which are prominent in a given domain.
It would therefore be useful, as astep in developing a
model of presence, to objectively and quantitatively ana-
lyze and describe those domain entities and their
interrelations.

Method

A semi-automated method of verbal data analysiswas
developed which can be used to derive object-oriented
domain models from interview transcripts, incident
reports, technical reports, informal domain descriptions,
and other domain documents. It isillustrated in figure 1.
The method produces object-oriented networks whose
nodes and relations are weighted according to their
prominence in the domain, as represented by the analyzed
text. In addition, descriptions of each node and relation
are provided in an outline form ordered by the weights.
The method was devel oped to address the need for a
capability to quickly and accurately produce an objective
and quantified object-oriented domain model in aform
that is useful for domain system devel opers.

In aprevious domain analysis (McGreevy, 1994), the key
domain entities were derived quantitatively and objec-
tively from the transcript of afield interview, but the rela-
tions were inferred by the analyst from a close reading of
the text in the contexts of the important entities. The new
method improves upon this approach by automating the
relationa analysis through a quantitative analysis of the
contexts of important entities. Further, results are pre-
sented in a more interpretable graphical form, and entities
and relations are described according to their prominence
in the domain.

Thefirst step of the method is to obtain appropriate
domain text. The main criterion is that the text should be



generated by domain experts themselves. Idedly, the
material will have been generated by the domain experts
for their own purposes. If the analysisisin preparation for
participant observation among domain experts, reports
concerning the domain that are written by the experts of
interest should be analyzed. If the domain experts do not
write technical reports, as with pilots, it may be possible
to obtain transcripts of on-the-job communications or
incident reports. Once some initial insight into the struc-
ture of the domain has been obtained from analysis of
such material, it may be possible to interview domain
experts, whose answers would provide additional text for
further analysisin order to test hypotheses about the
model or the domain, or to refine the domain model.

Oncethetext is obtained, it must be made available in
digital form and can be coded. If it is not already on-line it
must be digitized to ASCII form, that is, plain digital text.
The most direct way to do thisisto use a scanner and
optical character recognition (OCR) software. After hand-
correcting the inevitable errors of the OCR process, the
text can be coded, a process which is semi-automated.
Coding reduces diverse forms of words to their root or
basic forms, distinguishes between words with identical
spellings that represent either nouns or verbs or which
have multiple meanings, and links multiword terms of
particular salience (such as “home run” or “New Y ork™).

Once the coding is done, the text is processed to produce a
list of the unique words in the text, each with its fre-
guency of occurrence, sorted in descending order of fre-
guency. From thislist, the most frequently occurring
nouns, verbs, adjectives, adverbs, and (optionally) first
person pronouns are identified for use as “ probe terms.”
These words areinitialy considered to be the most impor-
tant ones in the domain text, and the words that occur in
their contexts are considered to be importantly related to
them. The most frequently occurring articles, conjunc-
tions, prepositions, nonaction and auxiliary verbs, and
other thematically uninteresting words are marked as
weightless (uncounted) place holders.

The key step of the method is then performed, in which
the proximity-weighted co-occurrence metric values are
computed for the most frequently occurring terms, called
“probeterms’ (PT), relative to the terms occurring within
asmall context or window surrounding each probe term,
called “terms-in-context” (TIC). An appropriate context
window sizeisthe average sentence length. An example
of the calculation of the relational metric is shownin fig-
ure 2(a) for awindow size of six. The example calculation
of the proximity-weighted co-occurrence relational metric
valuesisfor 12 termsin the context of one occurrence of
one active probe term (PT). The active probe term is the
one whose contexts are being processed. Other, nonactive

probe terms may be in these contexts but they are consid-
ered as terms-in-context. The sequence w1 through w12
(including PT) represents a sequence of terms found in the
analyzed text. PT is a probe term and w1-12 represent
terms found in the context of PT, that is, they are terms-
in-context (TIC). In this example, the context window
sizeissix, that is, it contains six words at atime asit
effectively slides along the entire text, moving forward
oneword at atime. The rows a-h represent eight positions
of the context window as it scans the text.

In window position “a’ the probe term (PT) is not within
the window, so the relational metric value for each word
in the window is incremented by zero. In window position
“b” the probe term is within the context window, so for
each word within the window, w2 to PT, the relationa
metric value is incremented by one. In window position
“c” the metric values of words w3 to w7 are each incre-
mented by one. By position “h,” the probe term is no
longer within the window, so no values are incremented
for that position. For the single occurrence of the probe
term shown here, the proximity-weighted co-occurrence
metric values of each word, relative to PT, are shown in
the bottom row of figure 2(a). Thus, for example, the rela-
tional metric value of w5 is 4, indicating that, for this one
occurrence, the relation between PT and w5 has a metric
value of four.

Note that the context window scans the entire text, and
whenever it contains the active probe term, the relational
values of termsin its context are incremented in a manner
similar to that shown here. Thus, for example, if there
were two occurrences of a given probe term in the entire
text being analyzed, and if term w5 were in the same
position relative to PT both times, w5’ s total relatedness
to PT inthetext would be 4 + 4 = 8. Thisvalue can be
indicated as: co-occ(PT,w5)=8, or R(PT,w5)=8. The
method does not use reflexive relations, so co-occ(PT,PT)
is set to zero.

Use of the sliding window method causes an asymmetry
in the relations between some terms. Specificaly, the
relational metric value of one probe term, PT1, in the con-
text of another probe term, PT2, is not necessarily equal to
the relational metric value of PT2 in the context of PT1.
Thisis because the context of one instance of an active
probe term stops just short of another instance of the same
probe term if they both occur within the same context
window. Figures 2(b) and 2(c) illustrate this asymmetry.
In the example, co-occ(age,flow) is equal to six while
co-occ(flow,age) is equal to four. Note that the smaller of
the two valuesis aresult of the fact that potentially over-
lapping contexts are, in effect, prevented from fully doing
so. In the exampl e of figure 2(c), this seems reasonable,
since “age” isaready in the context of the first occurrence



of “flow” and “color” isaready in the context of the sec-
ond occurrence of “flow.” Since cases with this extreme
degree of proximity between two occurrences of the
active probe term are rare, and since many contexts con-
tribute to afinal relational metric value, the degree of
asymmetry isrelatively small in most cases. The asym-
metry issue is addressed in more detail in the discussion
section.

The relational metric values which are produced can be
displayed as an association matrix with the probe terms
defining the rows, and the terms-in-context defining the
columns. In practice, the probe terms themselves are also
found among the terms-in-context. The cells of the associ-
ation matrix represent the relations between the row and
column terms, and each cell contains arelational metric
value. A similar matrix can be produced by paired com-
parisons, sorting tasks, and sequential actions (McDonald
and Schvaneveldt, 1988).

The overall processisone of identifying the most impor -
tant or prominent terms in the verbal data and the degree
of relatedness among the terms. This can be visualized as
starting with aW x W matrix whose rows and columns
areidentical and which both contain every uniquetermin
the verbal data. This can also be represented as a network
of W x W relations (which includes reflexive relations)
among W nodes. The method first identifies the N most
important of the W nodes, where importance is assumed
to be highly correlated with frequency of occurrence, and
N is much less than W. Next, the method determines the
strength of each of the relations among those N probe
terms and M terms-in-context. In practice, M is much
greater than N and some or all of the N terms appear
among the M terms-in-context. If a square matrix is
needed for application of data reduction algorithms, the
matrix can be padded with zeroesto producean M x M
matrix, or asmaller square submatrix.

Several different approaches are available to reduce the
complexity of the datain an association matrix. It is pos-
sible to apply multi-dimensional scaling (MDS) or cluster
analysis methods to the association matrix to find overall
dimensions of relatedness by computing a spatial
arrangement of the terms and looking for patterns such as
groups or other distributions (Kruskal and Wish, 1978). A
different approach isto apply the Pathfinder algorithm
(Schvaneveldt, Durso, and Dearholt, 1989) to the matrix,
which preserves an interconnected network while reduc-
ing it to asimpler one with certain selectable features,
such asthe property that it approximates a minimal span-
ning tree. MDS, cluster analysis, and Pathfinder network
reduction are especially useful for reducing association
matrices having cell valuesthat are rather uniformly dis-
tributed, as is common with paired-comparison data, but

the relational metric values yield to more straightforward
datareduction. The cell values (relational weights) pro-
duced by the proximity-weighted co-occurrence method
have alarge dynamic range, a small number of high val-
ues, and arapid fall-off from the highest values. This
enables the effective application of athreshold to select
the most salient relations by selecting those few having
the highest relational weights. This greatly reduces the
complexity of the final network while retaining the top
relations. This network provides the framework for
description of the domain. Aswill be shown, Pathfinder
networks do not preserve the relations with the highest
relational metric values, but they provide useful supple-
mentary representations of the domain.

The next step is to produce a description of every node
and relationship in the final network. The nodes and rela
tionshipsin the final network are listed in order of their
importance to serve as an outline for a document in which
each one is described, the object-oriented relational analy -
sisreport (see Appendix). All of the nodes are listed and
defined in order of the total weight of relationsin which
they participate. This ranks the nodes on degree of relat-
edness, which can be considered as a measure of the
importance of anode. Under the heading provided by
each node, the importantly related nodes are listed, and
each relationship is described.

To generate the descriptions, the important nodes and
relationships are described in aweight-prioritized, pair-
wisereational analysis. It is during this stage of the pro-
cess that the domain analyst must learn about the domain.
To do so, a concordance/KWIC index (Thomson, 1992) is
used to extract one probe term (PT) at atime from the
origina text, along with its contexts. These contexts are
reviewed in terms of the relationship of that node with one
term-in-context (TIC) at atime. The benefit of the rela-
tional metric method isthat it provides the analyst with a
focused, prioritized, and efficient outline of the most
important entities and the most important relationshipsin
the domain.

The products of the method include: an electronic
database containing the most important rel ationships
among the most important entities in the domain; a net-
work model of the domain and optional supplementary
networks; aKey Word In Context (KWIC) index in elec-
tronic form; and an object-oriented relational analysis
report containing descriptions of each node and each rela
tionship in the network model of the domain.

The domain model produced by this method illustrates
Simon’s empty world hypothesis. That is, the method pre-
serves only the small number of truly prominent entities
and relationships in order to produce a simple but poten-
tially useful description of reality.



Software for processing the text includes a mix of com-
mercial off-the-shelf software running on a personal com-
puter, Unix utilities running on a workstation, specially
written Unix shell scripts, and freeware from Internet. The
network figures were generated from tabular data by a
commercial software tool called KNOT (Knowledge
Network Organizing Tool), from Interlink, Inc., Las
Cruces, New Mexico.

Domain to be Modeled

A current domain of interest to NASA isthe Earth
Observing System (EOS), an ambitious attempt to create a
globally comprehensive capability to monitor and study
the Earth’ s environment as an integrated whole. EOSisa
complex domain which must be analyzed in order to pro-
vide designers with explicit and objective domain models
so that they can effectively design EOS information sys-
tems. A recent study of the state of scientific visualization
relative to EOS requirements (Botts, 1993a and 1993b)
indicates that there remains a significant unmet need to
effectively map user requirements to system designs.

The key bottleneck in visualization tools for EOS, accord-
ing to the scientists responding to Botts' survey, islack of
adequate software. In particular, many respondents char -
acterized their current visualization tools asinflexible, not
extensible, difficult to learn and use, failing to provide
integrated capability for both visualization and analysis,
too costly, and not doing all that the scientists need to do.
While there is not asingle solution, it is clear that acom-
monality of these shortcomingsis afailure of developers
to fully address the needs of users. It istypical of devel-
opersto give very limited attention to the real needs of
users (see discussion in McGreevy, 1994), and to instead
concentrate on the challenges of implementation. Even
some who propose to develop domain-oriented software
(e.g., Tracz, Coglianese, and Y oung, 1993) do not make
an adequate effort to discover user needs, but instead
expect the user to concisely package their own require-
mentsin aform that isimmediately useful to the devel-
opers. As an dternative to this unrealistic approach, it
would be helpful if reliable and valid domain models
could be made available to devel opers so that they would
have a correct understanding of the needs of users such as
EOS scientists without either the devel opers or the users
being required to perform the difficult and time-consum-
ing chore of developing this model for themselves.

In order to approach the human-computer interaction
requirements for visualization and analysis systems
within such a complex domain as EOS, it is necessary to
select avery specific target. A first cut isto limit the
scope to that within one of the many EOS Integrated

Studies (EOS/IS) groups (Asrar and Dokken, eds., 1993).
The volcanology group (“A global assessment of active
volcanism, volcanic hazards, and volcanic inputs to the
atmosphere from EOS") was selected, largely dueto the
author’ s desire to benefit from domain knowledge gained
during earlier work in field geology in volcanic terrain
environments (McGreevy, 1993; McGreevy, 1994). The
scope of the interests of the EOS/IS volcanology group is
world wide, involving a dozen or so lead investigators, so
afurther scaling down isrequired, at least for the devel -
opment stage of the method.

The method of domain modeling described in this paper
was originally developed to analyze interview transcripts,
S0 one approach might be to interview one or more mem-
bers of the EOS/IS group, and to apply the method to their
answers. Since access to expertsisalimited privilege
(Jorgensen, 1989), the interviewer must do considerable
preparation in advance. One way to do such preparation is
to analyze more readily available verbal datain advance
of the field work. Thus, the method can be applied at sev-
eral stages of adomain study. In this paper, since the
method is new, it was decided to first apply it to readily
available textual materials.

To select appropriate verbal data, it was noted that several
of the EOS/IS investigators had contributed to the devel -
opment of a CD-ROM set containing Earth sciences data
thought to be representative of future EOS datafor asin-
glevolcano (NASA, 1992). On that CD-ROM, references
to scientific papers were listed, some of which were
authored or co-authored by members of the EOS vol -
canology group. One of these papers, “Combined use of
visible, reflected infrared, and thermal infrared images for
mapping Hawaiian lavaflows’ (Abrams, Abbott, and
Kahle, 1991), was selected for the initial textual analysis
because the paper described use of multispectral datato
study volcanic terrain. The abstract of the paper is shown
infigure 3.

Once coded, the paper contains 3480 total words arranged
in 156 sentences, with an average sentence length of

22 words. There are 831 unique words in the text, of
which 42 (including “a,” “an,” “and,” etc.) are considered
to be weightless spacers, leaving 789 unique words of
interest.

Ideally, the method of analysis applied to this domain
document, which produces an objective and quantified
domain model of rather limited scope, can be developed
and scaled up to address increasingly larger contexts, that
is, multiple authors, studies, interviews, and other textual
resources. Thiswould alow it to address the needs of sci -
entistsin an entire Interdisciplinary Science group, such
as the volcanology group, and perhaps volcanologistsin
general. Should the method be found to be useful, it could



be effectively applied to other EOS/IS groups, aswell as
to other domains of interest.

Results

The resultsinclude: 1) an electronic database containing
the most prominent relationships among the most promi-
nent entities in the domain; 2) a network model of the
domain and several supplementary networks; 3) aKey
Word In Context (KWIC) index in electronic form; and
4) an object-oriented relational analysis report containing
descriptions of each node and each relationship in the
network model of the domain.

The core results consist of weighted relations between
pairs of weighted nodesin atabular database which

shall be called the R-list. As an illustration of the R-list,
thetop 40 relations are listed in table 1. There are

9075 records in the R-list, representing 9075 relations
among 789 unique terms. These were obtained by the use
of 50 probe terms (listed in table 2) and a context window
size of 22, applied to the coded version of the Abrams
text. (Issues concerning the number of probe termsand
the context window size are addressed in the discussion
section.) Each record in the R-list represents a proximity-
weighted co-occurrence relation between a pair of terms
(nodes) in the text. There are generally many records con-
taining a particular probe term (PT) or term-in-context
(TIC) but there is only one record containing any given
ordered pair (PT, TIC).

Figure 4 isagraph of the 9075 relational metric valuesin
the R-list, sorted in descending order. Relations with zero
weight are not included in the R-list. Clearly, only asmall
percentage of the total possible relations have large
weights. This seemsto be in accordance with Simon’s
empty world hypothesis, indicating that of all the many
possible relations, only avery few are important for “a
tolerable description of reality” (Simon, 1969, pg. 221).
The method described in this paper depends upon Simon’s
hypothesis being true for the domains to be analyzed, and
attempts to reduce the many possible relations to the few
which really matter. The graph in figure 4 shows that the
method identifies the desired small number of relations. In
later parts of this paper, evidence will be presented to
support the argument that these few relations do indeed
capture the essence of the domain. Of the 622,521 possi -
ble relations among the 789 unique wordsin the analyzed
text, the 789 reflexive relations (i.e., those between each
word and itself) are not used, and, in this study, the
method eliminated (zeroed) all but 9075 of the remaining
621,732 relations. Of these 9075 relations, it can be
observed in figure 4 that few have relational metric values
near the observed maximum of 314, and that most are

nearer to the minimum of zero. For example, 1222 rela-
tionships have relational metric values greater than or
equal to 25, 386 relations have values =50, 164 relations
have values 275, and 84 are 2100. The number of rela-
tions required for adomain model with an appropriate
level of detail isyet to be determined.

Thefirst aternative form of the resultsis the association
matrix. The weights of the 621,732 nonreflexive relations
among 789 unique terms can be represented as valuesin
the nondiagonal cells of a 789 x 789 association matrix.
The 789 cellsin the diagonal, representing reflexive rela-
tions between each word and itself, are not used. Only
9075 of the remaining 621,732 cells contain nonzero rela-
tional metric values, and these 9075 relations can be
represented as an association matrix having 50 rows and
789 columns. This matrix shall be called R-matrix. The
choice of 50 probe terms accounts for the 50 rows. There
are 789 columns because that is the number of unique
terms-in-context found in the vicinities of the probe terms.
Asit turns out, the 50 probe terms picked up every one of
the 789 unique termsin the coded text as aterm-in-con-
text. Of the 789 terms-in-context, 50 are probe terms
found in the contexts of other probe terms. Thus, within
R-matrix thereisa 50 x 50 matrix of relations among the
probe terms, a50 x 739 matrix of relations between the
probe terms and all of the other terms, and a variety of
other submatrices, as discussed below. Table 3, for exam-
ple, isa2l x 21 submatrix containing the top 40 relations,
which correspondsto the 40 item sublist in table 1.

Of all the possible submatrices extracted from R-matrix,
only the 50 x 50 matrix of probe terms, or submatrices of
it, have two different relational metric values between
every pair of terms. That is, they have one value for probe
term Y in the context of probe term X, and a different
value for probe term X in the context of probeterm Y. All
of the other relations in submatrices of the R-matrix are
unidirectional, that is, thereisasingle relational metric
value for term-in-context Y in the context of probe

term X.

The second aternative form of the resultsis the network.
The analyzed text can be represented by a network con-
taining 621,732 nonreflexive relations among 789 nodes.
The R-list and R-matrix implicitly describe a subnetwork
containing 9075 arcs and 789 nodes. This shall be called
the R-network. Each arc has a nonzero relational metric
value, and each node has aweight, its frequency of occur-
rence in the body of the text. The more heavily weighted
nodes and arcs represent the more important parts of the
network. It follows that simpler subnetworks can be
derived from the R-network which still retain the most
heavily weighted nodes and arcs, and thus could retain the
important characteristics of the domain. These



subnetworks correspond to sublists of the 9075-record
R-list, and submatrices of the 50 x 789 R-matrix.

Network M odels Based on the M ost Prominent
Relationshipsin the Text

Figure 5 shows an example subnetwork which includes
the 40 relations with the highest relational metric values
out of the 9075 relationsin the R-network. This network
directly corresponds to the 40 records shown in table 1
and the association matrix in table 3. Note that there are
21 nodes in this subnetwork. Within this subnetwork the
top five relations (with their relational weights shown in
parentheses) are old-> flow(314), aa-> flow(299), young-
> flow(296), pahoehoe-> flow(287), and age-> flow(271),
where the first word in each pair is a probe term, and the
second is aterm-in-context. (Note: aais ablocky form of
lava and pahoehoe is aropey form of lava.) The weights
of the nodesincluded here are: flow(81), age(32), old(24),
aa(19), pahoehoe(19), and young(13). From this very lim-
ited information, one can infer that “flow” isthe most
important node, and that the nodes “young,” “old,” “aa,”
and “pahoehoe’ are importantly related to “flow” in this
domain. A reading of the text confirmsthat “flow” isthe
most central concept, that determining flow age and dis-
tinguishing young from old flows is the main theme, and
that differentiating the two kinds of flow textures, aa and
pahoehoe, and determining their ages, is another of the
main ideas expressed. Thus, from even such atiny sub-
network as one consisting of five relations and six nodes it
is possible to tolerably well describe the reality of the
domain sampled by the text.

Similarly, the remainder of the subnet in figure 5 captures
other key notions of the text. For example, amodule cen-
tered on “data’ is aready beginning to emerge, showing
the close relation between TIMS [Thermal Infrared Multi -
spectral Scanner] and NS-001 [a multispectral scanner],
which are the two sources of data, and the “ data’ node.
Further, to use data, as indicated by the relation between
“use verb” and “data,” isacentral action that is
repeatedly expressed in the text. The fact that the nodes
“tims,” “ns_o00l” and “use verb” al converge on “data’
indicates the centrality of “data’ within this module, as
well as the subordination of the other three nodes. In addi-
tion, the node “image” is closely associated with “data”
because images in this domain are created from “data.”
Also, the characteristic of images which is most important
in thisdomain sampleis“color.” Accordingly, the close
relation between the nodes “image” and “color” clearly
captures thisidea. The fact that both “image” and “color”
are directly associated with “flow” isin harmony with the
fact that the images in this domain represent flows, and
colorsin these images differentiate one flow from
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another. The remaining nodes and linksin figure 5 are
also consistent with the main ideas expressed in the text.

By considering different numbers of the most heavily
weighted relations, that is, those with the highest rela-
tional metric values, various other sublists can be derived
from the R-list, producing submatrices of the R-matrix,
and subnetworks of the R-network. For example, using a
threshold value, T, applied to the graph in figure 4, the top
R relations can be selected. For example, for T = 75,

R = 164, as shown in figure 4. When the top R relations
are selected from the R-list, the records obtained include
not only the weight of each relation, but also the nodes
involved and their weights (see table 1). Thisinformation
can be used as an ordered list, or they can be used as an
association matrix or a network diagram, to guide the next
steps of the object-oriented domain analysis.

To obtain alarge enough network for a meaningful test
and demonstration of the method, a threshold value of

T = 75 was used. The resulting network is the one which
will be fully described in order to develop adomain
model. This network, shown in figure 6, is based on all
records in R-list having arelational metric value greater
than or equal to athreshold value of 75. The network con-
tains the top 164 relations in R-list. Participating in these
relations are 53 nodes. The weights of nodes and relations
are not shown in thisfigure in order to avoid visual clut-
ter, but they can be obtained from tables 2 and 5. In addi-
tion, these weights are discussed in more detail below in
the context of creating the object-oriented relational anal -
ysis report. Note that table 1 contains the top 40 of the
164 relations and 21 of the 53 nodesin figure 6. Further,
the network in figure 5 is a subnet of the onein figure 6,
and it, too, contains 40 of the 164 relations and 21 of the
53 nodesin figure 6.

Even without considering the weights of relations and
nodesin figure 6, it is evident that “flow” isthe central
node of the domain, judging by the number of relationsin
which “flow” participates. It is aso evident that the next
most important nodes are “image”’ and “data.” Without
counting the number of relations, their weights, or the
node weights, the nodes “age,” “color,” “old,”
“reflectance,” “component,” and “green” all seemto be
important at alevel just below that of “data.” Specific
attention is given to the weights and numbers of relations
in the section below on generating detailed descriptions of
the nodes and their relationships. For now it is sufficient
to note that the subnetwork in figure 6 adds nodes and
relations not contained in the smaller subnetwork in fig-
ure 5, and that those details correspond well to those
obtained in reading the text. For example, the action
“combine” is associated with “data’ since the domain text
describes the combination of NS-001 data and TIMS data.



The description of the nodes and relationsin the network
model of the domain (fig. 6) is provided in the object-ori -
ented relational analysis report shown in the Appendix.
Given the network in figure 6, the first step in generating
this report is to calculate new node weights based on
relatedness, as shown in table 4. Next, alist of the 164
most highly related node pairs is exported as plain text
from the R-list database, and the metric values are nor -
md ized (divided by the observed maximum), as shown in
table 5. Using thislist as aguide, each node is defined,
and the relationship between each node pair is described.
It is helpful to consult domain glossaries for definitions of
terms. To obtain descriptions of the relationships, the ana-
lyst reviews the original text. Figure 7 shows a screen
image of the concordance/KWIC index asit appears while
being used to search the original text for the node term,
“flow.” The window at the bottom shows some of the con-
texts around the term “flow” (the rest are available by
scrolling) while the window at the top contains the full
text context for any line selected in the bottom window.
(In practice, the windows are made much larger on the
computer screen, so as to display more of the contexts.)
By using the pattern matching capabilities in the concor-
dance program (Thomson, 1992), the contexts shown for
“flow” or any other word can be limited to just those
containing the second word in anode pair. For a small
body of text, it isjust as easy to print out al of the con-
texts of “flow” (or any other node) and to circle the occur-
rences of the second item in the node pair. A description
of the relationship is then obtained by reading the contexts
of the co-occurrences. The concordance/ KWIC index
aids the analyst during the process of describing the rela-
tionship between each pair of nodesin figure 6, which are
explicitly listed in table 5. The descriptions are shown in
the Appendix.

A simplified, object-oriented network model of the
domain can be derived from the network in figure 6

and the descriptions and weights in the object-oriented
rdlational analysis report (Appendix). This network,
shown in figure 8, shows only objects and inter-object
relations. Table 6 shows all 164 relationships of figure 6
mapped to object relationships. That is, if one of the par-
ticipantsin arelationship is an attribute, attribute value, or
action, rather than an object, itslabel is expanded to indi-
cate the name of the object to which it belongs. For exam-
ple, since “age” is an attribute of the object “flow,” the
label for “age” becomes “flow(age).” Similarly, since the
attribute value “old” refersto the attribute (relative)

“age,” which belongsto the object “flow,” the label of
“old” becomes “flow(old).” When arelationship is
between two nodes which refer to the same object, the
relationship representsinternal structure of the object, that
is, an intra-object relationship. For example, the relation-

ship between “flow(age)” and “flow(old)” isonewhichis
internal to the object “flow.” Otherwise, the relationship
represents an external, inter-object relationship. For
example, the relation-ship between “flow” and “image”
and that between “flow(age)” and “image(color)” are both
external, inter-object relationships. All relations between
an object and its internal s (attributes, attribute values, and
actions) are summed, and the sum is used as a measure of
the object’ sinternal complexity. In addition, once all enti-
ties are identified as objects or assigned to objects, all
relations between any two objects are summed and treated
as ameasure of overall inter-object relatedness. For
example, the one relationship between “flow” and “band”
isthat between “flow(age)” and “band,” whose relational
metric value is 0.25, so that is taken as the value of the
relation between “flow” and “band.” To simplify the net-
work even further, only one weight is shown for arcs
representing either mutual or one-way relations. Thus,
each relational weight in figure 8 isthe sum of the indi-
vidual relational weightsin either direction.

This object-oriented network model of the domain

(fig. 8) isacompanion to the detailed information in the
Appendix. It showsthat “flow” isthe most complex (i.e.,
elaborated) object in the domain, with the object “image”
only elaborated about 37 percent as much. The object
“data’ isonly 14 percent as complex as “flow.” Therela-
tion between “flow” and “image” is by far the dominant
one, with the next most important relation, between
“image” and “component,” being only 29 percent as
important. In the context of “flow,” the most importantly
related objects, after “image,” are “data,” “aa,” “ pahoe-
hoe,” and “group.” In the context of “image,” the most
importantly related objects, after “flow,” are “com-
ponent,” “data,” and “group.” Another feature is that
“image” is closely associated with a module consisting of
“component,” “band,” and “reflectance.” Further, “ data”
seemsto form amodule with “tims” and “ns_o0o0l.” This
network can serve as a summary framework of the
detailed descriptions in the Appendix. Figure 6 shows
both the intra-object and the inter-object relations.

Comparison of Result Network with Pathfinder
Networks

The network domain model shown in figure 6, which
serves as the basis for the object-oriented relational anal-
ysisreport (Appendix), could have been constructed by
alternate means. Pathfinder networks can a so be derived
from the relational metric valuesin R-list. Three were
created in order to compare them with the network
domain model in figure 6, which is based on the top

164 relations.
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The key equations and parameters for creation of
Pathfinder networks are described by Schvaneveldt,
Durso, and Dearholt (1989). The essential ideaisto
minimize the “path length” (which may include multiple
arcs) between nodes. The maximum number of linksin a
path is set by a parameter, g. A second parameter, r,
determines how relational weights contribute to the path
length. The minimal Pathfinder network has an r value of
infinity and a g value of n—1, where n is the number of
nodes in the network. One problem with large values of r
isthat asr increases, the proximity of nodes is determined
by the weaker associations between the nodes, thus reduc-
ing the influence of the most important relations. A prob-
lem with any values of g larger than Listhat asq
increases, increasingly indirect (multilink) relations take
precedence over direct relations. Asr or q decrease, the
number of linksincreases. When g =r =1, every associa
tion in the input matrix appears as arelation in the output
network. Thus, one must choose between an emphasis on
lessimportant or indirect associations and too many links
in the output network. The minimal Pathfinder network
(q=n-1, r =infinity) is the most readabl e choice, and
while it dropsimportant direct relations and relies on
implicit and very indirect relations, it does provide a gen-
uinely meaningful model of adomain. That model is not,
however, ideal for object-oriented analysis, as discussed
below.

Of the three Pathfinder networks created from datain
R-ligt, figure 9(a) is the most directly comparable to fig-
ure 6. Both networks contain nodes which are classes/
objects, attributes, attribute values, and actions, and they
each have about the same number of relations. To create
the network in figure 9(a), the parameter q was set to 99
and the parameter r was set to infinity, so thisisaminimal
Pathfinder network having 155 relations among

100 nodes. It is derived from the 3020 nonzero-weighted
relations among the 100 most interconnected nodes in
R-list. Figure 9(a) has 9 fewer relations but 47 more
nodes than figure 6. In cases where figure 9(a) hasthe
same relations as figure 6, the relational weights are iden-
tical. Both networks contain the top 24 relations, for
example. Because there are so many more nodes in this
Pathfinder network, it represents more detail about the
contents of the domain. To bring in so many additional
nodes while keeping the number of relations down, the
Pathfinder algorithm deleted many of the more important
relations, which were considered to be redundant. Thus,
for example, the important relation between “image” and
“data’ is deleted because a more heavily weighted multi -
link path can be traced via“flow.” Still, the sparse and
readable network in figure 9(a) contains an additional

47 nodes beyond that in figure 6, providing additional
domain information. Further, the Pathfinder network con-
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tains reasonable semantic associations, attesting to the
semantic coherence of the data and the utility of the
method.

The strategy of deleting important links because they are
“redundant” with multilink pathsisthe quality of
Pathfinder networks which makes them undesirable for
object-oriented analysis. In OOA, the analyst must iden-
tify collaborating classes/objects and internal class/object
structure. If such important relationships as that between
“data’ and “image’ are not made explicit in a network
domain model, then the analyst will fail to appreciate
those relationships. Another negative aspect of Pathfinder
networks for object-oriented relational analysisisthat as
important relations are omitted, |ess important ones are
retained. With Pathfinder networks, the only way to retain
all of the important relations and none of the indirect ones
isto settle for a dense network containing all of the many
associations in the input matrix.

Pathfinder networks, while not ideal for object-oriented
relational analysis, are still useful for reducing datain
large association matrices to sparse and readable network
representations. The many studies based on the Pathfinder
method (see Introduction) attest to its usefulnessin

mode ing domains. Thus, while networks based on a small
per centage of the top relations, such as figure 6, are more
directly applicable as the basis for object-oriented model -
ing of the most prominent relational structure of adomain,
the Pathfinder networks provide useful supplementary
information.

The Pathfinder network in figure 10(a) provides an addi -
tional example. It is one which is constrained to include
only the 50 probe terms. The network is based on a
Pathfinder analysis of the 1756 nonzero-weighted rela-
tions among the 50 probe terms contained among the
9075 relations in R-list. The algorithm used a g value of
49 and an r value of infinity, producing a network linked
by aminimal set of 102 relations. This network domain
model provides a useful supplementary view of the
domain, as represented by its 50 most important nodes.
These nodes are linked by anearly minimal spanning set
of relations. A similar supplementary view can be made,
based on the top relations among probe terms, but one
with the top 102 relations includes only 34 of the probe
terms. To include all 50 probe termsin the top relations, a
minimum of the top 495 relations would be required.
Clearly, the Pathfinder network provides a much more
readable network for a supplementary view containing all
of the probe terms.

The Pathfinder network in figure 11(a) contains the 30
most important classes/objects in the domain and the 70
which are most closely associated with them. No
attributes, attribute values, or actions are included. (The



notion of class/object was liberally interpreted for this
network. Color isincluded, for example, because it could
be considered to be a class/object by virtue of having a
potentially complex internal structure and being widely
reusable). The g and r values used by the Pathfinder
algorithm were 99 and infinity, respectively. This reduced
the 1454 nonzero-weighted relations among these

100 classes/objects to aminimal Pathfinder network con-
taining 137 relations among the 100 nodes. This network
usefully supplements the domain information contained in
figures 6, 9(a), and 10(a). To do so, it uses many relations
whose metric values are among the lowest, but it produces
ahighly readable, semantically interpretable network
domain model which efficiently interconnects all 100
nodes.

The chief contribution of Pathfinder networks to object-
oriented relational analysisisthat they provide sparse

and readabl e supplementary views of the semantics of

the domain. The three Pathfinder networks produced

from datain R-list (figs. 9(a), 10(a), and 11(a)) clearly
demonstrate a flexibility of viewpoint that is unavailable
when merely using the top R relations among N nodes.
On the other hand, the method of using the top relations
sacrifices none of the important relations to network effi-
ciencies or alternative views of the domain. Thus,

the two methods play complementary roles when applied
to proximity-weighted co-occurrence data. Differences
between the two approaches in terms of the numbers

of nodes and relations have already been discussed

above. Differencesin their relational values are shown

in figures 9(b), 10(b), and 11(b). Figure 9(b) compares
the relational metric values of the relations used in fig-
ures 6 and 9(a). Figures 10(b) and 11(b) compare the rela-
tional metric values of relations used in figures 10(a) and
11(a) with comparable networks having the same numbers
of top relations. Figures 9(b), 10(b), and 11(b) show that
the Pathfinder networks contain relations having lower
relational metric values (but have more nodes per relation)
than comparable networks containing only the top rela-
tions. While it is true that the Pathfinder networksin fig-
ures 9(a), 10(a), and 11(a) do contain the top 24, 24, and
14 relations respectively, they omit many of the next most
important relations. Thus, while Pathfinder networks are
useful they must be interpreted with care.

The threshold method for selecting the top relationsis
effective and the Pathfinder network reduction method is
not required because of the distribution of the relational
metric values. These weights, produced by the proximity-
weighted co-occurrence method, have alarge dynamic
range, asmall number of high values, and arapid fall-off
from the highest values. This enables the effective appli -
cation of athreshold to select the most salient relations by
selecting those few having the highest relational weights.

This reduces the complexity of the final network while
retaining the top relations, providing aframework for
description of the domain. Pathfinder network reduction is
more appropriate for reducing association matrices having
cell valuesthat are more uniformly distributed, asis
common with paired-comparison data. Figure 12 illus-
trates the difference between the relational weightsin a
typical association matrix based on paired-comparison
judgments (from Schvaneveldt, Durso, and Dearholt,
1989) (the upper graph) and the highest 700 of 9075 rela-
tional metric values computed from the analyzed text
according to the proximity-weighted co-occurrence
method devel oped in this paper (the lower graph). The
large dynamic range, small number of high values, and
rapid fall-off from the highest val ues distinguishes the
relational metric data from the paired-comparison data.
The Pathfinder method is only necessary for analyzing
relatedness values which are not strongly differentiated.
Thisincludes all of the paired comparison datain the
upper graph of figure 12, and those relations in the lower
graph which have relational metric values below a
threshold of around 75, that is, for relations beyond the
top 164 relations which produced figures 6 and 8, and the
object-oriented relational analysisin the Appendix.

Discussion

A key innovation introduced in this paper is an automated
method of calculating a relational metric, based on
proximity-weighted frequencies of co-occurrence among
termsin domain text, and the use of that metric to charac-
terize the relational structure of the analyzed domain.
Another innovation is the generation of link-weighted
networks based on the relational metric values derived
from verbal data, whereas other researchers have derived
such networks from paired comparisons, sorting tasks, or
sequential activities such as typing commands or pushing
buttons (see Introduction). A third innovation is the pro-
cessing of verbal datain such away asto generate an
object-oriented domain model for the purpose of imple-
menting software. This most directly builds on the ideas
of Abbott (1983), but improves the method by processing
domain-produced verbal data, and by objectively and
quantitatively deriving weights and rank orderings for the
domain terms and the relations among them. This use of
domain-produced data to generate a domain model is the
fourth innovation introduced in this paper. A fifth innova-
tion is the quantitative method of network reduction based
on object-oriented principles, as when the network
domain model in figure 6 is reduced to class/object rela-
tionsin figure 8, by applying the information in the
object-oriented analysis report (Appendix) and the rela-
tional metric valuesin table 6. This method provides some
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of the “information hiding” needed for representations of
complex domains, and it could be extended to reduce the
class/object network to a network of modules.

Efficacy and Repeatability of the Method

For the method of domain analysis presented in this paper
to be useful, the resulting model must represent the
prominent structural characteristics of the domain, as con-
tained in the analyzed text, in an explicit, objective, and
quantified form that is stable and reproducible. The effi -
cacy and repeatability of the method are discussed below,
as appropriate, for the key components of the method:
coding of the original text, determination of the prominent
domain entities and selection of probe terms, determina-
tion of the relative prominence of relations, creation of
domain networks, and description of key domain entities
and relations, including identification of domain classes/
objects and assignment of attributes, attribute values, and
actionsto classes/objects.

Coding— The degree of coding donein this study was
minimal, especially as compared with traditional content
analysis methods in which the primary task of the coder is
to assign terms to socio-political categories. In this study,
the coder differentiated nouns from verbs, and mapped
them to base forms. Where there was ambiguity of mean-
ing or part of speech, the coder assigned tags to eliminate
the ambiguities. The most variation of coding in this
method is likely to occur when multiword entities are
identified. One solution isto be conservative in the identi-
fication of multiword entities. At the extreme, none would
be identified. This, however, would force terms like
“MaunalLoad’ into two separate but closely related nodes.
At the other extreme, any adjective could be permanently
linked with its noun, which has the effect of artificialy
lowering the apparent prominence of the noun. A reliable
and effective linking of multiword entities would only
join terms such as“Mauna Loa.” Overall, the coding done
in this study was minimal and rather mechanical, making
it very repeatable. That the coding supports the effective-
ness of the method can be seen in the fact that meanings
were clarified and no spurious meanings were introduced.

Probe ter ms— Selection of probe terms (PT) is objective
and repeatable. The probe terms selected in this study
include the nouns, verbs, adjectives, adverbs, and first
person pronouns that were most frequently used in the
analyzed text. Words which were not used as probe terms
include: pronouns referring to things, nonaction and auxil-
iary verbs, conjunctions, prepositions, articles, and num-
bers. The purpose of using the most frequently occurring
termsisto capture an objective, overall characterization
of the prominent entities in the domain as represented in
the text. It might also be appropriate to supplement this
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view by using additional sets of probe terms comprised of
those frequently occurring terms which are also focused
on particular themes, but this remains for afuture study.

The effectiveness of initialy using the most frequently
occurring terms as the most important terms in the domain
sample, and thus as probe terms, must be demonstrated.
One argument in favor of the effectiveness of using fre-
guency of occurrence as a measure of importance is that
fact that it is the most fundamental metric used in content
analysis studies, and has been for decades (K rippendorff,
1980). Similarly, ethnographers routinely infer the impor-
tance of domain concepts or “native terms’ from their
presence, frequency, and context in verbal data
(Fetterman, 1989; Jacobson, 1991). Another argument in
favor of the effectiveness of using frequency of occur-
rence as a measure of importance is that the results of this
study show that a small number (50) of the most fre-
quently occurring terms (the probe terms) are closely
related to all of the other termsin the analyzed text. That
is, every one of the 789 unique terms appeared in the con-
text of one or more of the 50 probe terms. The ability of
50 probe terms to span the entire text arguesin favor of
accepting them as including or being among the most
important terms in the domain text. This also indicates
that 50 is alarge enough number of probe terms to span
the domain sample.

In contrast to using the most frequently occurring termsin
domain documents as probe terms, terms for deriving
Pathfinder networks from paired comparison studies have
been identified by more arbitrary means. For example,
Cooke and Schvaneveldt (1988) used 16 terms taken from
chapter headings of an introductory computer science
textbook as probe terms, and Schvaneveldt and his col-
leagues (1985) used 30 “basic concepts’ in air combat
without elaborating on their origin. McDonald and
Schvaneveldt (1988) cite a sequential adjacency study
whose probe terms were 49 Unix commands used by at
least five of nine experienced Unix users.

Theissue of how many probe terms should be used for
analysis of abody of text needs further investigation. In
this study, the use of 50 probe terms was suggested by the
distribution of frequencies of occurrence of the unique
words in the analyzed text. The distribution of candidate
probe terms (that is, words other than articles, preposi-
tions, and other such words) is shown in figure 13. The
most frequently occurring words are relatively few in
number and appear much more frequently than the others,
so these were used as probe terms. The cut-off point was
chosen to be the middle of the “knee” of the curve. At this
point, the frequency of the lowest ranking probe term,
“visible,” isonly 8, which isless than 10 percent of the
frequency of the most important probe term, “flow,”



which occurs 81 times. These criteria are somewhat arbi-
trary, however, and the issue remains as to where to draw
the line between probe terms and nonprobe terms, and the
effect of that decision.

Several constraints may influence the decision, including
the need to have a sufficient number of probe termsto
adequately model the domain, the cost of processing
probe terms, and the need to limit the number of paired
comparisons to be made in a parallel experiment. If it
takes 5 sec to make arelational judgment between a pair
of terms (McDonald and Schvaneveldt, 1988), then

50 probe terms compared with 789 terms-in-context
(which include the 50 probe terms) would require
(50*49/2) + 50* 739 = 38,175 judgments taking 53.02 hr.
If the comparisons were limited to paired comparisons of
probe terms, it would require 50*49/2 = 1225 judgments
taking 1 hr and 42 min. Paired comparisons among

60 probe terms jumps to 2 hr and 28 min, and 70 probe
terms would require 3 hr and 22 min. The cost of process-
ing probe terms has already decreased significantly by
improvements to the software, but the still-significant cost
of processing additional probe terms must be weighed
against the benefit. The key benefit is the quality of the
domain model produced by a given number of probe
terms. A method to obtain a quantitative measure of this
might be to find the relationship between the magnitudes
of the relational metric values of the top relations, and the
number of probe terms required to obtain these top rela-
tions. When inclusion of additional (less frequently occur-
ring) probe terms provides no additional important rela-
tions, this would indicate that a sufficient number of probe
terms had obtained a model of the desired complexity.
This method is being devel oped and applied in a subse-
quent study.

Relational metric— The proximity-weighted
co-occurrence method of determining the relative
impor tance of domain relationsis stable, objective,
quantified, and reproducible. The sliding window
calculation of the relational metric is conceptually
simple and it captures both the frequency of
co-occurrence among terms within multiple contexts
of selectable size and also their proximities within
each context. The method is aso reasonable. It works
in away that is analogous to the way a human reader
might evaluate relatedness among important words

in atext. In fact, the method was designed to automate
and objectify a process applied in a previous study to
derivation of a domain model from an interview
transcript (McGreevy, 1994). In that study, the
important words were determined by frequency
counts, just asin this study. These words were then
highlighted in the text and the text was reviewed to

evaluate the relationships among words. Words

found in the context of a highlighted term seemed to be
reasonably related to it, and those frequently occurring
closer to it seemed to be more closdly related. The size of
ameaningful context varied, but often appeared to range
from the sentence before to the sentence after aword. A
sliding window that is one sentence wide captures a simi -
lar context. Thus, the relational metric method of this
paper can be considered to be operationally effective
because it automates and objectifies a process that one can
usefully apply manually.

Asaquantitative basis of relational networks, application
of the proximity-weighted co-occurrence metric to
domain text has some advantages over paired comparisons
and sorting tasks. The metric is more contextualized and
specific because the associative contexts in which indi-
vidua relational weights are established occur during
thoughtful exposition of ideas in the creation of the text.
Further, the relational metric method finds multiple
instances of relatedness between termsin the text, where
each instance can have a different context and a different
degree of relatedness, and the final relational metric value
takes dl of theseinstances into account. Thus, therela-
tional metric is more contextualized and specific than a
single judgment concerning the overall degree of related-
ness between isolated words.

As noted in the method section, the sliding window
method of calculating the relational metric values can
produce asymmetric results, so that the relational metric
value between terms A and B is different from the value
between B and A. The asymmetry arises when an active
probe term appears more than once within the same con-
text window because the method of calculation has the
effect of preventing their contexts from fully overlapping.
Thisis demonstrated in the example given in figures 2(b)
and 2(c). The asymmetry is greater for relations involving
terms which are densely distributed in the text, such that
multiple instances of the term often occur within the con-
text window. For example, the distance in number of
words between two instances of theword “flow” isless
than 22 (the size of the context window) atotal of

47 times within the analyzed text. As aresult, the method
of calculation produces arelational metric value for
R(flow,old) which is 23 percent smaller than the value for
R(old,flow). In general, relations in which “flow” isthe
probe term have lower values than relations in which
“flow” isaterm-in-context. In the worst case, the value
for R(flow,young) is 38 percent smaller than the value for
R(young,flow). Among the top 164 relations, the median
difference between the relational metric value of
R(flow,X) and that of R(X,flow), when calculated using
the asymmetric method, is 17 percent.
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The density of other wordsin the text is much lower than
that of “flow” so the asymmetry is greatly reduced for
relational metric values involving these terms. The next
most densely occurring word (after “flow™) is“compo-
nent.” Instances of that word are separated by less than

22 words (the window size) only 15 times, compared with
47 timesfor “flow.” The relational metric values for
R(component,X) are not systematically larger or smaller
than those for R(X,component), for any word X, and the
values differ by an average of 6 percent. Other probe
terms besides “flow” and “component” occur with much
less density, and the relational metric values between each
of them and other terms typically differ by only afew per-
cent. Further, the relational metric values for R(A,B) and
R(B,A), for al words A and B which are mutually related,
are highly correlated (r = 0.96). It is also important to note
that while the asymmetry decreases the weight of one of
the two relations between two nodes, it has no effect on
the other. That is, while the value of R(A,B) is decreased
to some extent, the value of R(B,A) remains uninfluenced
and still represents the maximum degree of relatedness
between the two nodes. Thus, while avoidance of over-
lapping contexts does indeed introduce some asymme-
tries, they are limited and the results produced do
effectively represent proximity-weighted co-occurrence
relationships.

While the method produces effective results, a symmetri-
cal version of the method of calculating the relational
metric values would eliminate the differences in mutual
relational metric values between pairs of words. These
differences are introduced by the relative density of probe
terms and the fact that contexts of closely neighboring
instances of the same probe term are not allowed to fully
overlap. Since these differences might not represent useful
or meaningful domain information, their elimination
could improve the effectiveness of the results. It would
also simplify the networks by eliminating the directional-
ity of relations and reducing the amount of datato be pro-
cessed. A symmetrical version of the method has now
been implemented for future application. Unlike the
asymmetric method, it allows the contexts of neighboring
instances of the same probe term to overlap, so that
R(A,B)=R(B,A), asillustrated in figures 14(a) and 14(b).

Comparison of the network models obtained with the
asymmetrical method (fig. 6) and the symmetrical version
of the method (fig. 14(c)) indicate that the networks
obtained barely differ with respect to which nodes and
relationships are included in the domain model. What dif -
ferences exist are minor and peripheral. For example, typ-
ical differences between figure 14(c) and figure 6 are that
figure 14(c) adds alink of low weight (0.27) between the
word “group” and the number “1.5” while it omitsthe
node “brown,” whose node weight islow (0.034) and
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whose largest link weight is 0.26 (see Appendix). These
slight differences do not significantly change the character
of the domain representation because the most prominent
nodes and relations are unchanged. In addition, the top
164 relational metric values computed by the asymmetric
method and those computed by the symmetrical version of
the method are correlated (r = 0.89). As a consequence,
the essential features of the model of the domain remain
virtually unchanged. While the symmetric version of the
method differs sightly from the asymmetric method and
will henceforth be preferred to it for the sake of ssimplic-
ity, the latter method does indeed produce effective results
which are consistent with results obtained using the new
method.

The decision to use a context window size equal to the
average sentence length was an attempt to define a stan-
dard, linguistically reasonable verbal context around each
probe term in the analyzed text. The effect of varying the
context window size on the relational metric values and
on the resulting domain model is an areain need of further
investigation. While some preliminary work has been
done on this, the early versions of the software that were
used to conduct this study made the task extremely ardu-
ous. More efficient versions of the software for computing
the relational metric values have just been devel oped, and
these will enable further investigation. From the work
done so far, however, it is clear that a very small window
size emphasizes lexical co-occurrences such astherela
tion between “data” and “set,” and adjective-noun pairs,
such as “historic flow.” At the same time, small context
windows de-emphasi ze conceptual co-occurrences, such
as the relations between “flow” and “age,” “flow” and
“image,” and “flow” and “data.” It also appears that as the
context window size increases, the lexical relations
remain at relatively low metric values, while the globally
important relations rise rapidly in magnitude. It also
appears that the rate of increase in the metric value of a
relation, as context window size increases, is afunction of
the global importance of the relation. More work must be
donein this area, not only for a thorough sensitivity anal-
ysis of the context window size, but also because it may
lead to new and useful (but computationally costly) ways
to rank the important relations in the domain.

An alternative to using a context window that reaches
from one average sentence length before an occurrence of
aprobe term to one average sentence length after it, isto
use the particular sentence in which each probe term
occurs as the context for each occurrence. As an addi -
tional aternative, one could use the sentence containing
the occurrence of the probe term, as well as the sentence
preceding and the one following, as the context. It would
be valuable, in afuture study, to compute the relational
metric values using these alternative contexts, and to



compare the results with those obtained using the fixed-
size context window.

One question about the relational metric which must be
considered in more detail isthe degree to which the fre-
quency of occurrence of each node in a pair of related
nodes influences the relational metric value between
them. If the text were random, or if it included such a
diverse collection of themesthat it had no thematic coher-
ence, then a strong correlation between the product
occ(X)*occ(Y) and the relational metric co-occ(X,Y)
would indicate that the relatedness was likely due to
chance (Church, Gale, Hanks, and Hindle, 1991). Since
the analyzed text is thematically coherent, the product of
the frequencies of occurrence of words X and Y,
occ(X)*occ(Y), is not areasonable estimate of chance
co-occurrence. Instead, the fact that the authors of the text
refer toword X very frequently and also to word Y very
frequently would suggest that these are important words
within the theme, and that the words are in fact likely to
be closely related semantically, that is, related by the
coherence of the theme of the text. If, however, the rela-
tional metric were highly correlated with the product of
frequencies of occurrence, it would suggest that the metric
provides little if any relatedness information beyond that
indicated by the frequencies of the individual words.

Figures 15 and 16 indicate that the relational metric cap-
tures rel atedness between pairs of wordsthat is largely
independent of the frequencies of the individual words,
especialy for those pairs having higher relational metric
values. Figure 15 shows the correlation between the prod-
uct of normalized (i.e., each value divided by the maxi-
mum value) frequencies of occurrence and the normalized
relational metric for the top 164 relationships used to pro-
duce the object-oriented analysisin this paper, aswell as
the correlation for all 9075 relationshipsin R-list (all
those with nonzero relational metric values). The correla-
tions are weak, asindicated by the correlation coefficient
values of 0.577 and 0.678 respectively. Further, squaring
these values indicates that the percentage of the variance
of the relational metric values that is due to the product of
the frequencies of occurrenceis 33.2 percent for the top
164 relations and 46.0 percent for all 9075 relations.
These numbers suggest that there might be arelationship
between the number of top relations considered and the
influence of the frequency product on the variance of the
relational metric. Figure 16 confirms that thereisarda
tionship, and shows how that influence varies. These
graphs show that the variance of the relational metric,
co-occ(X,Y), isincreasingly independent of the product of
the frequencies of occurrence of the related nodes,
occ(X)*occ(Y), as the number of lessimportant relations
decreases. (Less important relations are those with lower
relational metric values and therefore less prominence, so

their rank order or “relation number” is higher.) Figure 15
clearly shows this graphically. As dots representing less
important relations are erased from the bottom of the fig-
ure, the value of r shrinks. Comparing figure 16 with fig-
ure 4 shows that the relations with the highest metric
values are those | east influenced by the frequency product
of the related nodes. Thus, the relational metric captures a
largely independent aspect of relatedness, especially for
the higher relational metric values.

Domain model— The effectiveness of the domain analysis
method, based on the proximity-weighted co-occurrence
metric, isindicated by evidence that the method captures
the essence of the domain structure, to the extent that it is
contained in the analyzed text, in an explicit, object-ori-
ented model of the domain. Review of the top relation-
shipsidentified by the method, and reading of the domain
text to which the method was applied, indicates that the
few relationships having the highest relational metric val-
ues seem to be the most important among the many possi -
ble relationshipsin the text. The method assigns arela
tional metric value of zero to al but 9075 of the 621,732
nonreflexive relations among the 789 unique terms in the
analyzed domain text. Of these 9075 relations, only 1222
have relational metric values of 25 to 314, only 378 have
values of 50 to 314, only 164 have values of 75 to 314 as
shown in figure 4. As demonstrated in the results section
(see the section “Network Models Based on the Most
Prominent Relationshipsin the Text” and fig. 5), a
domain model containing merely the top five relations
captures the most prominent structure of the domain text,
that isto say, the five relations and the nodes they relate
capture core components of the meaning of the analyzed
text. The results section also shows that domain models
based on the top 40 or 164 relations capture the essence of
the domain model and the core of the text’s meaning in
greater detail. The domain model based on the top 164
relations is thoroughly described in the results section and
especialy in the Appendix, and it is clear that thisisa
detailed moddl of the key components of the domain, and
that it capturesin some detail the relational structure of
the meaning of the text, despite the fact that it is based on
only 164/621,732 = 0.0264 percent of the total number of
relations in the domain text. This evidence arguesin favor
of the efficacy of the results, and it is consistent with
Simon’s (1968) “empty world hypothesis,” discussed in
the Introduction of this paper. That is, “for atolerable
description of reality only atiny fraction of all possible
interactions needs to be taken into account” (pg. 221).

Additional evidence in support of the efficacy of the
method is provided by the Pathfinder networks derived
from R-list, figures 9-11. Asdiscussed above, while the
Pathfinder networks are not ideal for object-oriented
analysis, they do capture a genuinely meaningful network
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representation of the data in association matrices. Based
on therelational metric data, the three different Pathfinder
networks contain reasonable semantic associations which
are in fact contained in the domain text. This attests to the
semantic coherence of the relational metric values and the
effectiveness of the relational metric method introduced in
this paper.

The step of describing the key domain entities and rela
tionshipsis one which requires judgment, and is therefore
less objective and repeatable than the automated steps of
the method. This step includes identification of domain
classes/objects, and assignment of attributes, attribute val-
ues, and actions to classes/objects. Use of the object-
oriented paradigm does, however, ensure that the structure
into which the domain isfit is one that is widely accepted
as appropriate for mapping domains of human endeavor to
explicit models and then to software. The internal struc-
tures of classes/objects are well defined, and constrained
to include a small set of components, including: attributes,
attribute values, and actions. Some practitioners might

add more components to the structure of objects, but few
would eliminate attributes, attribute values, or actions.
Thus, the essential form of the domain model is already
widely accepted.

Because the method produces a short, prioritized list of
the most prominent entities and relationships, the judg-
ment of the analyst in describing the prominent objects,
attributes, actions, and relationsis tightly focused. Entities
are described by the analyst in order of importance (as
determined by their relatedness to other entities), and this
order isthe same for every analyst. In addition, relation-
ships are also described in a prioritized order used by
every anayst. Given that the importance metrics, and thus
the orders of entities and relationships, are completely
objective and independent of the analyst, the process of
describing the entities and relations is well structured.
Further, in describing each relationship, only one pair of
entitiesis considered at atime, which focuses the atten-
tion of the analyst.

The utility and appropriateness of the contents of the par-
ticular descriptions is supported by the correspondence of
the descriptions to a reading understanding of the material
contained in the source domain document, as described in
the results section. Since the source text describes what is
important to the authorsin a part of their domain, the
diagram and metrics derived from that text according to
the relational metric method represent explicit, quantita-
tive, and objective information about that part of the
domain. While it would be easy to read the short source
text used in this study to obtain asimilar view of the
domain, the result of mere reading would not be explicit,
objective, or quantitative. Further, the analytical method
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can more easily scale up to rapidly and effectively process
and model the contents of many documents, and larger
bodies of text. By providing the description of the entities
and rel ationships (see the Appendix) and the additional
transformation of networks such as figure 6 to amore
clearly object-oriented network of figure 8, the method
provides software designers with domain models that can
map directly into object-oriented designs. A mere reading
knowledge of any number of texts, without producing
explicit, objective, and quantitative models, would not
provide the same benefit.

Further Evaluation of the M ethod

Application of the method to avariety of domainswould
help to test its effectiveness. Currently, for example, work
is underway to apply the method to incident reportsin an
aeronautical database. Application to multiple domains
should show whether the method captures the various
structural features of the domains, and the similarities and
differences among the domains that are evident by other
means or observations. For example, when the method is
applied to domainsin which presence in natural environ-
ments is particularly important, those relations which are
important in presence should be prominent. That is, rela-
tions of physical adjacency should dominate, so topologi-
cal relations among environmental classes/objects will
likely have high relational metric values, as will relations
between objectsin the environment and the explorer. In
addition, the associations of attributes, attribute values,
and actions with prominent physical entities should be
among the prominent relations. Further, representations
(e.g., images and data) should be much less prominent
than environmental entities. For example, an interview of
field geologists was analyzed in a previous study
(McGreevy, 1994) without benefit of the current method
of deriving relational metrics. To further test the method,
it could be applied to atranscript of the interview and the
results could be compared with those obtained previously.
Similarly, prominent relations in domains such as Earth
Observing System studies, where relations of physical
presence are much less salient, should be quite different in
character. Prominent relationsin EOS are likely to be
internal to the environmental, representational, and data
classes/objects, between representational and data objects,
and between those and environmental classes/objects.

Whether the relational metric method is effective for
deriving domain models from large bodies of text remains
to be determined. Asthe size of the analyzed text
increases, not only are logistical challenges multiplied,
but the structure of the contained domain model might
become incoherent or unwieldy. The coding of text, in
particular, involves considerable overhead when the



number of unique wordsin the text islarge. A comparison
of domain models derived from coded and uncoded texts
would help to indicate the specific contribution of coding
to the final product. It may be that for some purposes,
differentiating the noun form of aword like “flow” from
the verb form, or the rock form from the molten form, is
too costly. A related problem is the derivation of models
from alarge collection of small texts. Isit possible to
derive ameaningful core of commonality, or would the
multiple topics lead to a patchwork domain model? These
issues remain to be addressed.

If the method is used to prepare for interviewing domain
experts and/or field observations of their work, further
evaluation of the method could be obtained by using key
findings from analysis of domain text to devel op hypothe-
ses, and then testing them in interview questions or field
observations. The results of the current study, as repre-
sented by the network of 164 relations among 53 nodesin
figure 6 and described in the Appendix, provide arich col-
lection of material that could be used in preparation for
field interviews of Abrams and his colleagues (the authors
of the analyzed text), and for on-site observations of their
domain activities. For more comprehensive preparation, it
would be valuable to analyze a broader selection of
domain material which isstill focused on a coherent
group of investigators. The EOS Interdisciplinary Studies
volcanology group is one example of an appropriate scope
for further object-oriented relational analysis. Material
made available by the group on Internet via World Wide
Web (at http://www.geo.mtu.edu/eos/) provides exactly
the kind of information needed to conduct such an
analysis.

If the method described in this paper isused at alater
stage of domain analysis and testbed design, such asto
analyzefield interviewsin preparation for the design and
development of a domain-oriented testbed, further evalua-
tion of the domain model could be achieved. First, the
analyses would be provided to software implementersin
order to gauge their contribution to design and implemen-
tation. Further, as the implementation evolves, domain
experts would exercise early prototypes of the testbed. If
the implemented system meets the needs of the domain
experts, this would support the argument that the method
of object-oriented relational analysisisindeed effective,
that is, that it captures the essential elements of their
domain model in aform that is useful for implementation
of domain-oriented software.

Domain Models are Models of Presence

The entities and relations identified as being prominent in
adomain are the ones used to construct a model of the
domain. Thus, the entities and relations with which the

domain expert is persistently engaged in the domain itself
are those which comprise the domain model. This sug-
gests that every domain model is amodel of presence.
That is, theimmersion of adomain expert in adomainisa
persistent engagement, governed by the dictates of the
domain, with entities which are related by logical and
physical adjacencies or continuities (McGreevy, 1993).
These relations are also called metonymic relations
(McGreevy, 1994). The nature and character of the
domain determine which entities and which adjacencies
are important. The proportion and distribution of the
strictly logical adjacencies relative to physical adjacencies
vary from domain to domain. In every domain, the
domain expert islogically present. That is, the entities of
interest are logically related, the expert is persistently
engaged with these entities, and transitions among them
traverse logical adjacency relations. To the extent that the
persistently engaged domain entities are also physically
adjacent to one ancther, the domain expert is also atten-
dant to relations which are fundamental to physical pres-
ence among the domain entities. In this case, attentional
shifts among the prominent entities will tend to traverse
physical adjacency relations, while attentional shifts
among entities which are only logically related will tend
to traverse topical, categorical, definitional, or other rela-
tions which are discontinuous or disparate physically, but
are part of the connected logical fabric or logical topology
of the domain.

In the EOS domain analyzed in this paper, strictly logical
presence dominates. The network domain model shownin
figures 6 and 8 and the object-oriented relational analysis
report in the Appendix are based upon the entities and
relationships with which the EOS experts are persistently
engaged. The node weights represent the degree of
engagement with each node, and the relational weights
represent the degree of engagement with each relation-
ship. The most persistent engagement is with those nodes
and relationships having the largest weights. Thus, the
part of the EOS domain represented in the analyzed text is
one in which domain experts are persistently engaged
with anumber of concepts, asindicated by the networks
in figures 6 and 8 and the relational metric valuesin
table 6. The most important of these conceptsinclude, in
order of importance: age-related attributes of volcanic
lavaflows[R(flow,flow) = 14.02], the relationships of
these volcanic lava flows with the colors in laboratory
images [R(flow,image) = 8.83], the rel ationships among
colorsin these images [R(image,image) = 5.20], and the
relationships of these images with principal components,
a combination of reflectance data which are assigned to
the col orsred, green, or blue to produce false color
images of lava flows [R(image,component) = 2.58]. As
such, it isadomain dominated by strictly logical

19



adjacencies among entities which are not physically
adjacent. (The physical adjacency of colorsin the images
do not constitute domain-defining inter-object relations.)
While these conceptual emphases of the small source text
can be readily understood by reading it, the fact that they
are also explicitly quantified in the domain model based
on the relational metric method lends credence to the
method.

The notion that such domain models can be analyzed as
models of presenceis supported by the ability of the
domain model to explicitly, objectively, and quantitatively
represent the conceptual emphases with which the authors
of the source text were persistently engaged. That is,
object-oriented domain models can represent presence
because they model persistent engagement. More evi -
dence for this would be provided by domain models of
field geology and planetary surface exploration, including
Apollo mission lunar surface exploration and robotic
rover missions. Models of these domains, objectively and
quantitatively derived using the relational metric method,
should indicate a measurably greater degree of persistent
engagement among physically adjacent entities, which
would indicate the greater role of physical presencein
these domains. Such models could be used to improve the
designs of virtual environment systems for planetary
exploration, and aid in atheoretical understanding of
presence. In general, the relational metric method of
domain analysisthat isintroduced here has the potential
to produce useful domain models to guide the designs of a
variety of computer-based systems, and contribute to a
better understanding of the analyzed domains.

Conclusion

This paper describes arelational metric method of verbal
data analysis which produces object-oriented domain
models that are explicit, objective, and quantified.

The method produces models of the relational structure
of domains, as represented in domain-produced verbal
data, by computational means. Relational metric values
are based on proximity-weighted frequencies of
co-occurrence between a small number of probe terms
and theterms in their contexts. Object-oriented relational
analysis of the resulting domain structure produces a
model of the domain in aform that is useful for software
implementers. Models from related or very different
domains can be compared and contrasted, providing the
ability to observe structural similarities and differences.
This can lead to a better understanding of the domains
themselves, and to more effective and less expensive
domain systems. One important use of the relational
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metric method of domain analysisisto investigate the
role of logical and physical presencein avariety of
domains, which can support development of atheory of
presence, and improve the design of virtual environment
systems.
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S context of PT - - - - - - - - - >

w w2 w8 wd o ws w PT w w8 w9 wi0 wil wi2
a o0 0 0 0 0 0 0
b 0 1 1 1 1 1 1 0
c 0 1 1 1 1 1 1 0
d 0 1 1 1 1 1 1 0
e 0 1 1 1 1 1 1 0
f 0 1 1 1 1 1 1 0
g 0 1 1 1 1 1 1 0
h 0 0 0 0 0 0 0
0 1 2 3 4 5 - 5 4 3 2 1 0

Figure 2(a). Example calculation of proximity-weighted co-occurrence relational metric values for 12 words in the context
of one occurrence of one active probe term (PT). See text for explanation.

S context of PT2 - - - - - - - - >
age <wd> flow <wd> flow col or

wo wi w2 wd w4 PT2 w6 ptla w7z ptlb w9 wi0 wil wi2 wi3
a 1 1 1 1 1 1 0
b O 1 1 1 1 1 1 0
c 0 1 1 1 1 1 1 0
d 0 1 1 1 1 1 1 0
e 0 1 1 1 1 1 1 0
f 0 1 1 1 1 1 1 0
g 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0
[ 0 0 0 0 0 0 0 0
] 0 0 0 0 0 0 0
1 2 3 4 5 - 5 4 3 2 1 0 0 0 0

Figure 2(b). Relational metric value between two probe terms, ptl (e.g., “flow”) and PT2 (e.g., “age”), in which PT2 is the
active probe term (in uppercase bold type). The terms ptla and ptlb are two instances of the same probe term, ptl. The
relational metric value of pt1 in the context of PT2 is 4 + 2 = 6. Compare this figure with figure 2(c).

<- - - - - - - context of PTla ->
<- - context of PTlb - - - - - - >
age <wd> flow <wd> flow col or

wi w2 w3 w4 pt2 we PTla w7 PTlb w9 wi0 wil wi2 wi3 wl4
a 0 O O O 0 0 O
b 0 1 1 1 1 1 1 0
c o 1 1 1 1 1 1 o0
d o 1 1 1 1 1 1 o0
e o 1 1 1 1 1 1 o0
f o 1 1 1 1 1 1 o0
g o 1 1 1 1 1 1 o0
h o 1 1 1 1 1 1 o0
i o 1 1 1 1 1 1 o0
i o 0O 0O O o0 O0 O
o 1 2 3 4 5 - 6 - 5 4 3 2 1 o0

Figure 2(c). Relational metric value between two probe terms, PT1 (e.g., “flow”) and pt2 (e.g., “age”) , in which PT1 is the
active probe term (in uppercase bold type). PT1a and PT1b are two instances of the same probe term, PT1. Note that
context of an active probe term never reaches beyond an instance of the same active probe term. The relational metric
value of pt2 in the context of PT1 is 4. Compatre this figure with figure 2(b).
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Abrams, M.; Abbott, E.; and Kahle, A.: Combined Use of Visible, Reflected Infrared, and Thermal Infrared Images
for Mapping Hawaiian Lava Fows. J. Geophys. Res., vol. 96, no. B1, 1991, pp. 475-484.

The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces.
These changes have been mapped using remote sensing data from the visible and reflected infrared and
thermal infrared wavelength region. They are related to the physical breakdown of surface chill coats,
the development and erosion of silica coatings, the oxidation of mafic minerals, and the development
of vegetation cover. These effects show systematic behavior with age and can be mapped using the
image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to
silicarind development and fine structure of the scene; the reflectance data show the degree of
oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength
regions show more than either separately. The combined data potentially provide a powerful tool for
mapping basalt flowsin arid to semiarid volcanic environments.

Figure 3. Reference and abstract of the text that was analyzed via the proximity-weighted co-occurrence relational metric.
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Table 1. The 40 most important relations in the domain sample, and the nodes involved in those
relations. These are the first 40 of 9075 recordsin R-list, the tabular results database describing the
relational structure of the domain sample. The database is sorted in decreasing order of the relational
metric, co-occ(PT, TIC). The 40 records shown here have the 40 highest values of co-occ(PT, TIC).

co-occ(PT,TIC)®

pra occ(PT)P TICC occ(TIC)d value max —value + 1
old 24 flow 81 max = 314 1
a 19 flow 81 299 16
young 13 flow 81 296 19
pahoehoe 19 flow 81 287 28
age 32 flow 81 271 44
flow 81 old 24 241 74
flow 81 age 32 238 77
image 41 flow 81 224 91
flow 81 pahoehoe 19 222 93
color 35 flow 81 221 94
tims 21 data 44 220 95
data 14 flow 81 217 98
flow 81 a 19 211 104
color 35 image 41 211 104
image 41 color 35 208 107
blue 18 flow 81 205 110
group 14 flow 81 194 121
blue 18 green 22 193 122
green 22 flow 81 192 123
green 22 blue 18 190 125
flow 81 data a4 186 129
flow 81 young 13 185 130
flow 81 image 41 184 131
ns ool 13 data 44 183 132
data 44 tims 21 181 134
flow 81 color 35 172 143
reflectance 26 band 17 169 146
flow 81 group 14 167 148
use verb 18 data 44 166 149
flow 81 green 22 165 150
flow 81 blue 18 161 154
image 41 data 44 153 162
data 44 use verb 18 152 163
dark 11 green 22 152 163
old 24 year 12 148 167
year 12 old 24 146 169
band 17 reflectance 26 146 169
data 44 ns ool 13 145 170
green 22 component 27 141 174
relaive 16 age 32 140 175
aProbe term.

bpT" s frequency of occurrence within the body of the text (highest is 81).
CTerm-in-context which was found in the context of PT within the text.

d1IC's frequency of occurrence within the body of the text (highest is 81).
€Proxi mity-weighted co-occurrence value (the relational metric) between PT and TIC.



Table 2. The 50 probe terms, each with its frequency of occurrence in the domain sample. Aswill be seen later, not
all of these terms are included as probe terms among the terms participating in the top 164 relationships (see fig. 6
and table 5). Instead, some of these terms are included only in the contexts of other terms. These are shown in
parentheses. Further, some of these terms are not included at all among the top 164 relationships. These are shown
in square brackets. The terms “change”, “show”, and “combine” are verbs but have no “_verb” tag because in the
analyzed text they have no noun usages from which they must be distinguished.

flow 81 use verb 18 [spectral] 13 (brown) 9
image 44 band 17 thermal 13 [channd] 9
data 41 iron 17 (we) 13 difference 9
color 35 show 17 young 13 ferric 9
age 32 infrared 16 [surface] 12 [oxidation] 9
component 27 relative 16 year 12 plate 9
reflectance 26 group 14 dark 11 [silical 9
old 24 red 14 emittance 11 study 9
green 22 area 13 ka 11 weathering 9
tims 21 [change] 13 [map_verb] 11 [unit] 8
a 19 field 13 (spectrum) 11 visible 8
pahoehoe 19 micron 13 combine 10

blue 18 ns_ool 13 [vegetation] 10




@

(b)

Figure 4. Relational metric values for the 9075 proximity-weighted co-occurrence relations identified in the analyzed text.
(a) 9075 relational metric values in decreasing order of size, (b) 9075 relational metric values in decreasing order of size

(detail).
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Figure 5. Network based on the 40 most important relations in the domain sample. The top five relations are shown with
bold arcs. This network corresponds to the list of relations in table 1 and the association matrix in table 3.
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Figure 6. Network domain model based on the threshold method. The network includes the 164 top relations, which

associate 53 nodes. Of the 53 nodes, 41 are probe terms. In the Appendix, the terms (nodes) and relationships (arcs) of

this network are described, and the relative importance of each is quantified.
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Table 4. Example of calculation of N, the estimate of node importance used to determine the node order in the Appendix.
N isameasure of the overall relatedness of each term. It is equal to the sum of the normalized relational weights for all
relations involving the term, divided by the largest value of N. Key: PT = probe term, TIC = term in context, “Norm’'d
co-occ” isthe normalized co-occurrance metric. That is, the value of the metric is divided by the maximum metric value
of the 9075 relationsin R-list: co-occ(old, flow) = 314.

PT

od

a
young
pahoehoe
ae
flow
flow
image
flow
color
data
flow
blue
group
green
flow
flow
flow
flow
flow
flow
flow
show
relative
dark
flow
flow
reflectance
year
flow

ns ool
area
flow
flow
flow
iron

red
flow
flow
use verb
wesathering
ferric
flow
flow

Total relatedness of “flow” to others:

32

PT or TIC = “flow”

TIC

flow
flow
flow
flow
flow
old
age
flow
pahoehoe
flow
flow
a
flow
flow
flow
data
young
image
color
group
green
blue
flow
flow
flow
show
relative
flow
flow
year
flow
flow
reflectance
area
dark
flow
flow
iron
1935
flow
flow
flow
brown
basalt

norm’d co-occ

1.000
0.952
0.943
0.914
0.863
0.768
0.758
0.713
0.707
0.704
0.691
0.672
0.653
0.618
0.611
0.592
0.589
0.586
0.548
0.532
0.525
0.513
0.433
0.430
0.398
0.354
0.338
0.331
0.328
0.322
0.322
0.315
0.303
0.299
0.290
0.283
0.271
0.268
0.261
0.258
0.258
0.255
0.245
0.239
22.253

PT

image
color
image
flow
image
image
tims
data
image
image
image
use verb
image
image

a

field

ns ool
image
ae
image
difference
image
component

Total relatedness of “image” to others:

PT or TIC ="“image’

TIC

flow
image
color
image
data
tims
image
image
infrared
use verb
fied
image
component
ae
image
image
image

a

image
difference
image

ns ool
image

norm’'d co-occ

0.713
0.672
0.662
0.586
0.487
0.443
0.433
0.401
0.325
0.309
0.306
0.299
0.290
0.274
0.274
0.274
0.268
0.264
0.261
0.255
0.255
0.245
0.239
8535

Example calculations of N(node) used in Appendix,
from total relatedness:

N(flow) = 22.253 / 22.253 = 1.000
N(image) = 8.535/ 22.253 = 0.384

etc.



Table 5. List of 164 top relationships, sorted by frequency of occurrence of probe terms (PT) then by the normalized co-
occurrence of PT and TIC (term-in-context): norm’d co-occ(PT,TIC). Thislist serves as the starting point for creation of
the object-oriented relational analysis report (Appendix).
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The weathering of Hawaiian basalts inarid to semiarid environments is accompanied by distinctive |43
chernical and mechanical changes, beginning after initial eruption and continuing over a period of
thousands of years. These changes can be used to estimate relative ages of individual basalt Qg%
have used remate sensing technigques, combining wisible/near-infrared/short-wave infrared
CYHIRY images from the WS- 001 scanner and thermal infrared images from the Thermal |nfrared
FMultispectral Scanner (TIMS) to map these changes quantitatively. This approach is particularly
effective both for young flows (<1.5 ka) that are just beginning to weather and whose ages are
difficult to assess by eye, and for older more oxidized flows.

Lava flows inarid regions an the island of Hawaii are nearly unvegetated and may be exposed for

<af m

w v
170 similar to what was observed for the aa  flows. The decrease in the blue
160 the blue component with age of  flows. The systematic progression of
10 to relative ages of pahoehoe and aa flows. The thermal data are sensitive
3 Images for Mapping Hawaiian Lava  Flows The weathering of Hawaiian
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Figure 7. Example of use of an interactive concordance (Thomson, 1992) showing a computer screen image as it appears
while being used to search the original text for the node term, “flow.” The window at the bottom shows some of the
contexts around the term “flow” (the rest are available by scrolling) while the window at the top contains the full text

context for any line selected in the bottom window. (In practice, the windows are made much larger on the computer

screen, so as to display more of the contexts.)
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L rum

Figure 8. Top 164 relationships, combined into inter-class relations (shown as one-or two-way arcs), and node weights
indicating the internal complexity of classes/objects based on the sum of intra-class/object relational weights. Nodes
without weights have no internal structural relations among the top 164 domain relations. Thus, for example, the internal
structure of the class/object “flow” is the most elaborated, and “image” has the second most elaborated internal structure.
Further, the largest sum of inter-class/object relational weights is between “flow” and “image” indicating their close
association in this domain sample. The 164 relationships and their mapping to class/object relationships are shown in
table 6.
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Table 6. Top 164 relationships mapped to class/object relations, listed in al phabetical order by class/object, and by co-
occ when the PT class/object equals the TIC class/object. Items not in parentheses are classes/objects, whileitemsin

parentheses are internals of classes/objects. These relationships are the basis of figure 8.
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Figure 12. Comparison of relational data from a typical paired comparison experiment (Schvaneveldt, Durso, and
Dearholt, 1989) and relational metric values derived from verbal data based on proximity-weighted co-occurrence.

(a) Relational weights from a typical paired-comparison experiment, (b) 9075 relational metric values in decreasing order
of size (detail).
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Frequency of occurrence of coded words
in a scientific paper on remote sensing
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Figure 13. Frequency of occurrence of coded words in the original source text, a scientific paper on remote sensing. The
probe terms, listed in table 2, were selected from among those words with a frequency of occurrence greater than or equal
to eight.
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Figure 14(a). lllustration of the symmetric method of computing the relational metric value between two words (e.g., “flow”
and “age”) when two instances of a probe term (e.g., “flow”) are in close proximity. To find the relational metric value for
R(flow,age), that is, “age” in the context of the probe term (PT) “flow,” the metric values for each instance of the probe
term “flow” relative to “age” are summed, in this case resulting in a value of 6. This equals the metric value of “flow” in the
context of the probe term “age,” as shown in figures 14(b) and 2(b), illustrating that this method is, indeed, symmetric. The
context window here is six words, including the probe term, to the left and right of the probe term. Active probe term: PT1a
and PT1b. Terms in context: w2-4, pt2, w6, w7, w9-13.
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Figure 14(b). lllustration of the symmetric method of computing the relational metric value between two words (e.g., “flow”
and “age”) when two instances of a term (e.g., “flow”) are in close proximity to the probe term (e.g., “age”). To find the
relational metric value for R(age,flow), that is, “flow” in the context of the probe term “age,” the metric values for each
instance of “flow” relative to the probe term “age” are summed, in this case resulting in a value of 6. Active probe term:
PT2. Terms in context: w0-4, w6, ptla, w7, ptlb, wo.
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Figure 14(c). Network based on symmetric method of calculating relational metric values. Note that arrowheads on
relations are not needed since the relations have the same values in both directions. This network is very similar to
figure 6, which is based on the asymmetric method.



Correlation between relational metric values
and products of frequencies of occurrence

for the 164 most important relationships
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Figure 15. Correlations between normalized relational metric values and products of normalized frequencies of occurrence
for the top 164 relationships and for all 9075 relationships in R-list. (a) Correlation between relational metric values and
products of frequencies of occurrence for the 164 most important relationships, (b) correlation between relational metric
values and products of frequencies of occurrence for all 9075 relationships in R-list.
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Figure 16. Influence of the frequencies of occurrence of related words on the relational metric values between them, as

percentage of variance
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indicated by the percentage of variance of the relational metric values due to the products of the frequencies of

occurrence of the nodes related. The influence of the frequencies of occurrence is lowest for the most prominent relations.
Percentage of variance increases rapidly as the number of top relations in the domain model increases to about 60, then
increases more gradually as the number of relations approaches 6000. “Relation number” is the rank order of each
relation based on its relational metric value. The most prominent relations have the lowest relation numbers. Compare this
figure with figure 4. (a) Percentage of variance of the relational metric values due to frequencies of the nodes related,

(b) percentage of variance of the relational metric values due to frequencies of the nodes related (detail).
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Appendix






Object-oriented relational analysis report, which describes the nodes and rel ationships in the object-oriented network
shown in figures 6 and 8. The report consists of alist of nodes (entities), each with a sublist of the nodesin its context.
Nodes are listed in order of estimated importance. N is an estimate of the node's relational importance. (Seetable 4.) Ris
the normalized proximity-weighted co-occurrence metric. The term “internals,” as used in this appendix, refersto
attributes, attribute values, or methods of a class/object.

FORMAT:

node (N=x.xxx): definition ([node] => included in figure 6 as term-in-context only, not as a probe term)
related node R description of relationship
XXX 0.xx

XXX => appearsin two places; intra- or inter-node weight determined by this interpretation
{>0¢ => appearsin two places; intra- and inter-node weight NOT determined by thisinterpretation

flow (N=1.000): A lateral, surficial outpouring of molten lavafrom avent or afissure; also, the solidified body of rock
that is so formed; synonymous with lava flow. (Bates and Jackson, 1987)

Relations between “flow” and its attributes and attribute val ues:

Age-related attributes and attribute values:

age 0.76  attribute of flow; The fundamental issue concerns measuring the ages of flows using

remote sensing techniques.

old 0.77  atribute value of relative age, which is an attribute of flow;

young 059 attribute value of relative age, which is an attribute of flow

relative 0.34 Therdative reflectance of flowsin different spectral bandsis systematically related
to the relative age of flows.

year 0.32 ageof aflow ismeasured in years

1935 026  historic lavaflow from Mauna Loa ; The 1935 flow is adjacent to the 1843 and 1899

flows, and these are the three historic lava flows within the study area.
Material-related attribute values

iron 0.27  one of the mgjor constituents of basaltic lavaflows; Iron isoxidized by weathering
of the flow.

basalt 0.24  type of rock which comprises the studied lava flows

Color-related attribute and attribute value
{color} {0.55} attribute of flow
brown 0.25 true surface color of certain flows
Methods:

show 0.35 Flows, flow data, and/or flow dataimages show spectral features and other effects of
chemical and physical processes, especially systematic effects of weathering with
flow age.

Relations between “flow” and other objects and their internals:
pahoehoe 0.71  kind of flow distinguished by its ropey texture

a 0.67  kind of flow distinguished by its blocky texture
data 059 collection of remote sensing measurements related to flow
image 0.59  Flows are represented in images.
color 055 attribute of image; Image colors vary with flow age.
green 053 attribute value of image color that represents selected flow data
blue 051 attribute value of image color that represents selected flow data
dark 029 quality of colors representing flows
{brown} {0.25} color of certain flowsin false color images
group 0.53  age-based collection of flows
area 0.30 region containing flows

reflectance 0.30 ratio of energy reflected by aflow to that incident upon it, which varies over the
surface of aflow
{relative} {0.34} Therelative reflectance of flowsin different spectral bandsis systematically related
to the relative age of flows.
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image (N=0.384): two dimensional array of pixels, each assigned a color which represents a numeric data value;

Relations between “image” and its attributes and attribute values:

color 0.66 attribute of flow images used to judge relative age of flows
difference 025 Some components used to create images are the difference between two bands. Color
differences in images indicates different flow ages.
Methods:
use verb 0.31 action applied by the researchers to image data, image processing methods, and

systems for gathering image data

Relations between “image” and other objects and their internals:

flow 0.71  Flows are represented in images.
age 027 Relative flow age can be determined from systematic color variationsin
multispectral images.
data 0.49 images are created from remote sensing data
infrared 0.32 some of the dataused in imagesis from in the infrared part of the spectrum
TIMS 0.44  system for acquiring image data; kind of image
field 0.31 TIMSimagesare checked in the field.
component 029 Principal components are assigned to red, green, and blue to produce false color
images.
a 026 Aaflows of different ages are more readily differentiated in NS-001 imagesthan in
TIMS images.
(band)

{difference} 0.25  Some components used to create images are the difference between two bands. Color
differences in images indicates different flow ages.
NS-001 025 system for acquiring image data; kind of image

data (N=0.374): acollection of measurements;

Methods:
use-verb 048 Dataare used to assess relative ages of flows, and to map flows. Methods are used to
process, especially to combine, data. Tools are used to gather data, measure
effects, and analyze samples.
combine 032 TIMSthermal infrared data are combined with NS-001 visible/near infrared/short
wavelength infrared data.

Relations between “data’ and other objects and their internals:

flow 0.69 TIMSand NS-001 scanned lava flows from aircraft to gather remote sensing data.
age 0.36 Thedataconsist of spectral measurements that are assigned colors to indicate flow
age.
TIMS 058  system for acquiring thermal infrared data; kind of data
NS-001 0.46  system for acquiring visible/near infrared/short wavelength infrared data; kind of
data
image 0.40 representation created from data
color 029 Datavauesare represented by image colors.
a 026 TIMSand NS-001 data are used to determine the relative ages of different aaflows

and to distinguish aafrom pahoehoe.
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age (N=0.293): years since eruption of alavaflow;

Relations between “age,” its object “flow,” other internals of “flow,” and objects which inherit from “flow”

flow 0.86 Ageisan attribute of flow.
relative 041 Relative age can be indicated by image color differences.
a 025 Image colorsindicate the relative ages of aaflows.
pahoehoe 024  Image colorsindicate the relative ages of pahoehoe flows.
Relations between “age” and objects besides “flow” and their internals:
data 034 TIMSand NS-001 datais processed to determine flow age.
show 0.25 Datavauesand image colors show systematic variations with flow age.
image 026  False color images created from the data indicate different flow ages with different
colors.
color 043  Agecan beindicated by image color.
{show} 0.25 Datavalues and image colors show systematic variations with flow age.

systematic 025  There are systematic weathering effects which show up as a systematic progression
of image colors with increasing flow age.
band 0.25 Reflectance in one band versus another varies with flow age.

green (N=0.261): one of the primary colorsin the RGB triad;

Relations between “green” and other internals of its object “image” :

(image)
blue 0.61 Insome NS-001 images, pahoehoe flows range in color from blue for younger ones
to blue-green to green-blue to green for older flows, which does not provide for the
best differentiation.
dark 0.34 Dark green isthe color of pahoehoe flows which are >4000 years old in certain NS-
001 and TIMS images.
red 024 Red and green are two of the three primary colorsin RGB color triad.
Relations between “green” and objects besides “image” and their internals:
flow 0.61 Flowsin various age groups are green, dark green, blue-green, or green-bluein
certain false color images.
old 039 InNS-001 images, with principal components assigned to primary image colors, aa

flows 500-1500 years old are light blue-green; those 1500-4000 years old are
green-yellow; and those >4000 years old are dark green.

component 045 A numbered component is associated with a primary color such as green.
3 024  Channel 3 and component 3 are associated with the color green.
group 0.29 Different shades of green are associated with different flow age groups.

old (N=0.254): aged;

Relations between “old,” its object “flow,” and other internals of “flow” :

flow 1.00 Inthisdomain sample, the most strongly related entities are “old” and “flow”. The
most fundamental idea in the analyzed text is that of old flows.
year 047 Flowsare X yearsold, where X isavariable.
500 029  Flows 200-500 and 500-1500 years old were differentiated in the images.
1500 0.27  Flows 500-1500 and 1500-4000 years old were differentiated in the images.
young 025 Young and old are the two major categories of relative age.
Relations between “old” and objects besides “flow” and their internals:

(image)
green 0.39  Old pahoehoe flows are green in the processed NS-001 and TIM S images.
brown 026  Older aaflows appear uniformly brown in TIMS images, while younger aaiswell

differentiated in arange from reddish-browns to blue-browns in NS-001 images.
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color (N=0.243): acharacteristic of images and flows which visually distinguishes one part from another;

Relations between “color” and its object “image”:

image 0.67  Color isthe most important attribute of images in this domain sample.
Relations between “color” and objects besides *image” and their internals:
flow 0.70  Flows of various ages are represented in images by various assigned colors. Flows
have natural color, which varies dlightly with age.
age 0.38 Image color varies with flow age.
component 0.33 A color may be associated with a component.
data 030 Datavaluesare represented in images by colors.
pahoehoe 0.27  Aaand pahoehoe flows of different ages are displayed in different colors.

component (N=0.216): acombination of image data from different bands, produced by principal components analysis,
that contains a certain percentage of the total statistical variance in the image; A component is assigned a
number, and selected ones are assigned the color red, green, or blue.

Relations between “ component” and itsinternals:
(component number)
3 0.32  number assigned to a component
4 0.31  number assigned to a component

Relations between “ component” and other objects and their internals:
reflectance 043  Reflectance data from several bands are processed to identify principal components.

band 040 Datafrom several bands are processed to identify principa components.
image 0.24  Principal components are derived from image data, and are used to create derived
images.
green 0.32 Greenisoneof the RGB triad of colors assigned to principal components.
aa (N=0.187): A Hawaiian term for lava flows typified by arough, jagged. spinose, clinkery surface. (Bates and
Jackson, 1987)
Relations between “aa,” its superclass “flow,” the internals of “flow,” and other subclasses of “flow”:
flow 0.95 generdization of aa
old 028 NS-001 data distinguishes old aa flows from one another.
age 026  Therelative ages of old aaflows are best differentiated in NS-001 images.
pahoehoe 031  With age, pahoehoe undergoes physical and chemical changes that differ from those

undergone by aa.

Relations between “aa’ and other objects:

data 0.32 Remote sensing data can be used to differentiate between young and old aa, and to
distinguish aa from pahoehoe

image 0.27  The appearance of aaflowsin multispectral images differs from that of pahoehoe
flows.
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reflectance (N=0.174): Theratio of energy reflected by a body to that incident upon it. (Bates and Jackson, 1987) A
radiometric quantity, varying over the surface of aflow, which can be measured in different spectral bands to
produce spectral data.

Relations between “reflectance” and its attributes and attribute values:
micron 0.28  unit of measure applied to wavelengths of radiant energy, including reflectance
high 0.27  Older aaflows have higher reflectance toward the red and infrared part of the
spectrum. Vegetation has higher reflectance in other bands.

Relations between “reflectance” and other objects:

band 054 range of electromagnetic spectrum in which reflectance or other radiometric quantity
is be measured

component 0.38 Reflectance datafrom several bands are processed to identify principal components.

flow 0.33  Reflectance varies over the surface of aflow.

blue (N=0.173): one of the primary colorsin the RGB triad;

Relations between “blue”’ and other internals of its object “image” :

(image)
green 0.61 Blueand green represent flows over arange of ages. Variants on blue and green
include blue-green and green-blue.
color 029 Blueisone of the primary colorsin the RGB color triad. 1n NS-001 images, young

pahoehoe flows were an indistinguishabl e blue colored units.

Relations between “blue” and objects besides “image”’ and their internals:

flow 0.64 Blueand variants of blue are typical flow colorsin the processed images.
old 0.28  Inprocessed NS-001 images, aa flows of 200-500 years old are blue-brown, and
those of 500-1500 years old are light blue-green.
component 0.33 Blueisassigned to one of the principal components.
group 0.28  Flow age groups were associated with blue and variants of blue, green and its

variants, and reds including brown.

pahoehoe (N=0.148): A Hawaiian term for atype of basaltic lava flow typified by a smooth, billowy, or ropy surface.
(Bates and Jackson, 1987)

Relations between “ pahoehoe,” its superclass “flow,” internals of “flow,” and other subclasses of “flow”:

flow 0.91 generalization of pahoehoe
age 0.26 Relative ages of young pahoehoe flows are more readily seen in TIMS images.
a 031 With age, aa undergoes physical and chemical changes that differ from those
undergone by pahoehoe.
Relations between “ pahoehoe” and the internals of other objects:
(image)
color 0.30 Aa and pahoehoe flows of different ages are displayed in different colors.

TIMS (N=0.138): Thermal Infrared Multispectral Scanner, a system flown on board a NASA C-130B aircraft that
collects thermal infrared datain six spectral channels between 8.2 and 11.7 microns.,

Relations between “TIMS’ and other objects:

data 0.70 dataareacquired by TIMS
image 043 imagedataare acquired by TIMS
NS-001 033 LikeTIMS, NS-001 isasystem for acquiring data. Their spectral bands/channels

differ (see their definitions).
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agroup (N=0.133): age-based collection of flows;

Relations between “group” and other objects and their internals:
flow 0.62 Flows are grouped according to age in five age groups:
I: 200-500 yearsold (0.2-0.5 ka)
[1:  500-1500 years old (0.5-1.5 ka)
[11: 1500-4000 yearsold (1.5-4 ka)
IV: 4000-8000 years old (4-8 ka)
V: >8000yearsold (>8 ka)

ka 0.33 thousands of years before the present; A range of ages defines a group (see preceding
table).
(image)
green 0.30 Variantsof green are associated with several flow age groups.
blue 0.29 Variants of blue are associated with several flow age groups.

band (N=0.117): A frequency or wavelength interval . (Bates and Jackson, 1987) Spectral data acquisition systems
such as TIMS and NS-001 have sensors which are sensitive to different bands.

Relations between “band” and its attributes and attribute val ues:

(band number)
4 026  number assigned to aband of TIMS and a different band of NS-001

Relations between “band” and other objects:
reflectance 0.46 radiometric quantity measured in several spectral bands

component 0.36 Datafrom several bands are processed to identify principal components.

NS-001 (N=0.115): A multispectral scanner developed by NASA as a Thematic Mapper Simulator. It has been flown
on board a NASA C-130B aircraft to collect multispectral datain the visible, and short and long wavelength
infrared regions corresponding to the seven L andsat-4 and -5 Thematic Mapper bands. In addition, NS-001 has
an eighth band in the short wavelength infrared between 1.13 and 1.35 microns.

Relations between “NS-001" and other objects:

data 058  Multispectral remote sensing datais acquired by NS-001.

TIMS 0.34 like NS-001, a system for acquiring data; Their spectral bands/channels differ (see
their definitions).

flow 0.32 NS-001 data were acquired from Hawaiian lava flows.

image 0.27  Old pahoehoe flows appear greener in NS-001 images, given the processing used in
this particular study.

relative (N=0.112): comparative; relating each to the other;

Relations between “relative,” its object “flow,” and other internals of “flow” :

flow 043 Relative ages of flows are displayed in color images created using TIMS and NS-001
data.
age 045 Relative ages of flows are displayed in color images created using TIMS and NS-001
data.
Relations between “relative age” and objects besides “flow” :
band 0.33  Reflectance in one band relative to another indicates relative flow age.
reflectance 0.29  Reflectance in one band relative to another indicates relative flow age.

Relations between “relative” and its other object “component” :
component 0.25 Relative contributions from each of three components determines image color.



use (verb) (N=0.107): bring into action or service;

Relations between “use (verb)” and the users:

we 0.26 We (the researchers) used remote sensing techniques, combining TIMS and NS-
001 data, to measure weather effectsin order to determine relative ages of lava
flows. We also used scanning electron microscopy to analyze field samplesin
checking our results.

data 0.53 The researchers used data to assess and map the relative ages of flows.

image 0.30 Researchers used data displayed as images.

flow 0.26 The relative ages of flows can be determined using TIMS and NS-001 data.
TIMS 0.25 TIMS can be combined with NS-001 data using remote sensing techniques. TIMS

data can be used to map young pahoehoe flows.
year (N=0.096): unit of flow age;
Relations between “year,” its object “flow,” and other internals of “flow”:

flow 0.33 Age of aflow ismeasured in years.
old 0.46 an attribute value of age; Y ear isaunit of age.
500 0.29 Flowsin group | were 200-500 years old, and those in group |1 were 500-1500
yearsold.
1500 0.27 Flowsin group Il were 500-1500 years old, and those in group |11 were 1500-4000
yearsold.

infrared (N=0.093): part of the emittance spectrum of the lava which constitutes the flow; includes reflected infrared

and thermal infrared;

Relations between “infrared,” its object “band,” and the internals of “band” :

(band) (note: “infrared,” “thermal,” and “visible” imply different upper and lower bounds of bands
within the spectrum)
thermal 0.31 TIMS gathersdatain thermal infrared bands.
visible 0.30 NS-001 gathersdatain visible, near-infrared, and short-wave infrared bands..

Relations between “infrared” and objects besides “ band” :
reflectance 0.24 NS-001 measures infrared reflectance, while TIMS measures thermal infrared.

young (N=0.092): relatively recently erupted; not aged;

Relations between “young.” its object “flow,” and other internals of “flow” :
flow 0.94 Young flows arerelatively unweathered. Y oung aa flows are differentiated by age

using both NS-001 and TIM S data, but young pahoehoe flows are only readily
differentiated using TIMS data.

old 026  Old flows differ from young flows because of physical and chemical changes due to
wesathering.
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dark (N=0.080): absence of light; not light in color;

Relations between “dark” and other internals of its object “image”:
green 0.48 Dark greenisthe color of the oldest pahoehoe flows in both NS-001 and stretched
TIMSimages. The youngest aa flows are dark blue-green in stretched TIMS
images.

Relations between “dark” and objects besides “image” and their internals:

flow 040 (see“green” above) Recent flows are relatively unweathered and are dark to the eye.
old 026  Dark greenisthe color of the oldest pahoehoe flows in both NS-001 and stretched
TIMS images.

show (N=0.069): exhibit, demonstrate, make evident;

Relations between “show,” its object “flow,” and other internals of “flow”:
flow 043  Flows, flow data, and flow images show systematic effects with flow age.
age 025 Various measurements show systematic changes with flow age.

Relations between “show” and its other object “data’ :
data 025 Flow data show systematic effects with flow age. Reflectance data shows the degree
of oxidation.

area (N=0.060): region of volcanic terrain;

Relations between “area” and other objects:
study 0.38 A study isconducted in a particular area.
flow 0.32  Anareaof interest can contain many lava flows.

iron (N=0.057): metallic element which is one of two major components of basaltic |ava flows (the other is magnesium)

Relations between “iron,” its object “flow, and other internals of “flow” :
flow 0.28  Weathered flows have higher ferric iron content.
ferric 0.31  Ferriciron isaweathering product that forms on the surface of flows. Theferriciron
content in afield sample of aflow can be measured using wet chemical analyses.
Ferric iron content increases systematically with flow age.

ka (N=0.054): unit of measure of time; thousands of years before the present;

Relations between “ka”’ and internals of its object “flow” :

(flow / age)
15 0.30 Groupsll and Il have 1.5 ka as lower and upper boundaries, respectively.
8 026 Groups!V and V have 8 ka as lower and upper boundaries, respectively.
Relations between “ka” and objects besides “flow” :
group 0.32  The age boundaries of aflow group are measured in ka, that is, thousands of years
before the present.
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red (N=0.051): one of the primary colorsin the RGB triad;

Relations between “red” and other objects and their internals:
component 0.38 Red, one of thethree primary colorsin the RGB triad, is associated with one of the
principal components.

flow 0.27  Flows appear more red to the eye as they age, due to the oxidation of iron. In
combined TIMS and NS-001 images, older flows become more rusty or redder
with age.
(image)
brown 024 InTIMSimages, the youngest prehistoric aaflows (0.2-1.5 ka) are reddish-brown.

ferric (N=0.043): designating or of iron with avalence of three;

Relations between “ferric,” its object “flow,” and other internals of “flow” :
flow 0.25 Ferriciron isaweathering product of basaltic lavaflows.
iron 040 (sameasabove)

micron (N=0.040): aunit of length; one thousandth of a millimeter or millionth of a meter;

Relations between “micron,” its object “reflectance,” and other internals of “reflectance”:
reflectance 0.35 Thewavelength of reflectance is measured in microns.
08 0.26 Increasingly older flows develop higher reflectance at 0.8 microns.

field (N=0.037): thesite, or pertaining to the site, of the lavaflows;

Relations between “field” and other objects:

image 0.27 Remote sensing images were checked against field images and observations.
we 025 We (theresearchers) studied the study areain the field to check findings from remote
sensing data.

difference (N=0.034): element of dissimilarity;

Relations between “difference,” its object “image,” and other internals of “image” :
image 0.25 Differencesin image colors correspond to differences in flow ages.
color 0.25 (sameasabove)

[brown] (N=0.034): acolor which is a combination of red with some green and/or blue;

Relations between “brown” and internals of its object “image” :
(image)
red 024  Older aaflows appear uniformly brown in TIMS images, while younger aaiswell
differentiated in arange from reddish-browns to blue-browns in NS-001 images.

Relations between “brown” and other objects and their internals:

flow 0.25 Older aaflows appear uniformly brown in TIMS images, while younger aaiswell
differentiated in arange from reddish-browns to blue-browns in NS-001 images.
old 026 (sameasabove)
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thermal (N=0.034): having to do with heat;

Relations between “thermal” and internals of its object “band” :
(band) (note: “infrared,” “thermal,” and “visible” imply different upper and lower bounds of bands
within the spectrum)
infrared 044 TIMS gathersdatain thermal infrared bands.

visible (N=0.033): part of the emittance spectrum of the lava which constitutes the flow;
Relations between “visible” and internals of its object “band”:
(band) (note: “infrared,” “thermal,” and “visible’ imply different upper and lower bounds of bands

within the spectrum)
infrared 0.44  NS-001 gathers datain visible, near-infrared, and short-wave infrared bands.

study (N=0.032): asystematic investigation:;

Relation between “study” and other objects:
area 0.34 A study isconducted in a particular area.

combine (N=0.031): integration using Karhunen-L oeve transformations, that is, principal components analysis (PCA);

Relations between * combine” and its object “data’:
data 0.37  Theresearchers combined datafrom TIMS and NS-001 because TIM S cannot
differentiate among old aa flows, but NS-001 can, and NS-001 cannot differentiate
young pahoehoe flows, but TIMS can. (They each can differentiate among young
aaflows and among old pahoehoe flows.)

[we] (N=0.023): the researchers themselves;

Relations between “we” and other objects and their internals:
(data; methods; equipment)
use verb 026  We (theresearchers) used remote sensing techniques, combining TIMS and NS-001

data, to measure weather effectsin order to determine relative ages of lavaflows.
We also used scanning electron microscopy to analyze field samplesin checking
our results.

field 0.25 We (theresearchers) studied the study areain the field to check findings from remote
sensing data.

plate (N=0.012): full pageillustration;

Relations between “ plate” and itsinternals:
(number)
1 0.27 Plate 1isageologic map of the Mauna Loatest site.

[high] (N=0.012): grest in intensity;

Relations between “high” and its object “ reflectance” :
reflectance 0.27  Older aaflows have higher reflectance toward the red and infrared part of the
spectrum. Vegetation has higher reflectance in other bands.

weathering (N=0.012): physical and chemical effects of weather on rock surfaces;

Relations between “weathering” and its object “flow” :
flow 0.26  There are systematic weathering effects which show up as a systematic progression
of image colors with increasing flow age.
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[spectrum] (N=0.011): €electromagnetic spectrum, the entire range of wavelengths or frequencies of electromagnetic
rediation;

Relations between “ spectrum” and its subclasses:
emittance 0.25 Datafrom the reflectance and emittance part of the spectrum were combined.

[systematic] (N=0.011): orderly;

Relations between “systematic” and internals of its object “flow”:
(flow)
age 025 Flows, flow data, and/or flow dataimages show spectral features and other effects of
physical processes, especialy systematic effects with flow age.

emittance (N=0.011): ratio of emitted radiant flux per unit area of a substance to that of a blackbody radiator of the
same temperature; The radiance of a surface is afunction of both its temperature and spectral emittance.
Emittance is related to the composition of a surface.

Relations between “emittance” and its superclass, “ spectrum” :
spectrum 0.25 Datafrom the reflectance and emittance part of the spectrum were combined.

[basalt] (N=0.011): avolcanic rock composed largely of iron, magnesium, and calcium;

Relations between “basalt” and its object, “flow”:
flow 0.24 Thestudied lavaflows consist of basalt.
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